TY - JOUR
T1 - Performance of an Indirect Injected Engine Operated with ULSD#2 Blended with Fischer-Tropsch Synthetic Kerosene
AU - Soloiu, Valentin
AU - Gaubert, Remi
AU - Muinos, Martin
AU - Moncada, Jose
AU - Beyerl, Thomas
AU - Molina, Gustavo
AU - Williams, Johnnie
N1 - Publisher Copyright:
© 2017 SAE International.
PY - 2017/3/28
Y1 - 2017/3/28
N2 - This study investigates the use of a natural gas derived fuel, synthetic Fischer-Tropsch (F-T) paraffinic kerosene, in both it's neat form and blended with ultra-low sulfur diesel (ULSD#2), in a naturally aspirated indirect injected engine. A blend of a mass ratio with 20% of the F-T fuel and 80% ULSD#2 was studied for its combustion characteristics, emissions, and efficiency compared to conventional ULSD#2 at a constant speed of 2400 RPM and operating at IMEP range from 4.5 to 6.5 bar. The F-T blend produced ignition delays 17% shorter than ULSD#2 resulting in slightly lower peak apparent heat release rates (AHRR) along with decreased peak combustion temperatures, by up to 50°C. Nitrogen Oxide (NOx) emissions of the F-T blend decreased by 4.0% at 4.5 bar IMEP and at negligible amounts at 6.5 bar IMEP. The F-T blend decreased soot significantly at 5.4 bar IMEP by 40%. Efficiencies of the F-T blend were similar to ULSD#2. Mechanical Efficiency increased with load from 45% to 64%, and thermal efficiency reached 42% for the blended fuel and 46% for ULSD at 4.5 IMEP. The results prove that the F-T fuel is a potential future alternative to ULSD#2.
AB - This study investigates the use of a natural gas derived fuel, synthetic Fischer-Tropsch (F-T) paraffinic kerosene, in both it's neat form and blended with ultra-low sulfur diesel (ULSD#2), in a naturally aspirated indirect injected engine. A blend of a mass ratio with 20% of the F-T fuel and 80% ULSD#2 was studied for its combustion characteristics, emissions, and efficiency compared to conventional ULSD#2 at a constant speed of 2400 RPM and operating at IMEP range from 4.5 to 6.5 bar. The F-T blend produced ignition delays 17% shorter than ULSD#2 resulting in slightly lower peak apparent heat release rates (AHRR) along with decreased peak combustion temperatures, by up to 50°C. Nitrogen Oxide (NOx) emissions of the F-T blend decreased by 4.0% at 4.5 bar IMEP and at negligible amounts at 6.5 bar IMEP. The F-T blend decreased soot significantly at 5.4 bar IMEP by 40%. Efficiencies of the F-T blend were similar to ULSD#2. Mechanical Efficiency increased with load from 45% to 64%, and thermal efficiency reached 42% for the blended fuel and 46% for ULSD at 4.5 IMEP. The results prove that the F-T fuel is a potential future alternative to ULSD#2.
UR - http://www.scopus.com/inward/record.url?scp=85018453263&partnerID=8YFLogxK
U2 - 10.4271/2017-01-1283
DO - 10.4271/2017-01-1283
M3 - Conference article
AN - SCOPUS:85018453263
SN - 0148-7191
VL - 2017-March
JO - SAE Technical Papers
JF - SAE Technical Papers
IS - March
T2 - SAE World Congress Experience, WCX 2017
Y2 - 4 April 2017 through 6 April 2017
ER -