TY - JOUR
T1 - Persistence of homology over commutative noetherian rings
AU - Avramov, Luchezar L.
AU - Iyengar, Srikanth B.
AU - Nasseh, Saeed
AU - Sather-Wagstaff, Keri
N1 - Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/11/15
Y1 - 2022/11/15
N2 - We describe new classes of noetherian local rings R whose finitely generated modules M have the property that ToriR(M,M)=0 for i≫0 implies that M has finite projective dimension, or ExtRi(M,M)=0 for i≫0 implies that M has finite projective dimension or finite injective dimension.
AB - We describe new classes of noetherian local rings R whose finitely generated modules M have the property that ToriR(M,M)=0 for i≫0 implies that M has finite projective dimension, or ExtRi(M,M)=0 for i≫0 implies that M has finite projective dimension or finite injective dimension.
KW - Finite injective dimension
KW - Finite projective dimension
KW - Tor
UR - http://www.scopus.com/inward/record.url?scp=85135709447&partnerID=8YFLogxK
U2 - 10.1016/j.jalgebra.2022.07.027
DO - 10.1016/j.jalgebra.2022.07.027
M3 - Article
AN - SCOPUS:85135709447
SN - 0021-8693
VL - 610
SP - 463
EP - 490
JO - Journal of Algebra
JF - Journal of Algebra
ER -