TY - JOUR
T1 - Polynitroxylated Pegylated Hemoglobin: A Novel Neuroprotective Hemoglobin for Acute Volume-Limited Fluid Resuscitation After Combined Traumatic Brain Injury and Hemorrhagic Hypotension in Mice
AU - Shellington, David K.
AU - Du, Lina
AU - Wu, Xianren
AU - Exo, Jennifer
AU - Vagni, Vincent
AU - Ma, Li
AU - Janesko-Feldman, Keri
AU - Clark, Robert S.B.
AU - Bayir, Hülya
AU - Dixon, C. Edward
AU - Jenkins, Larry W.
AU - Hsia, Carleton J.C.
AU - Kochanek, Patrick M.
PY - 2011/3/1
Y1 - 2011/3/1
N2 - Objective: Resuscitation of hemorrhagic hypotension after traumatic brain injury is challenging. A hemoglobin-based oxygen carrier may offer advantages. The novel therapeutic hemoglobin-based oxygen carrier, polynitroxylated pegylated hemoglobin (PNPH), may represent a neuroprotective hemoglobin-based oxygen carrier for traumatic brain injury resuscitation. Hypotheses: 1) PNPH is a unique non-neurotoxic hemoglobin-based oxygen carrier in neuronal culture and is neuroprotective in in vitro neuronal injury models. 2) Resuscitation with PNPH would require less volume to restore mean arterial blood pressure than lactated Ringers or Hextend and confer neuroprotection in a mouse model of traumatic brain injury plus hemorrhagic hypotension. Design: Prospective randomized, controlled experimental study. Setting: University center. Measurements and Main Results: In rat primary cortical neuron cultures, control bovine hemoglobin was neurotoxic (lactate dehydrogenase release; 3-[4,5-dimethylthiazol-2-yl-]-2,5-diphenyltetrazolium bromide assay) at concentrations from 12.5 to 0.625 μM, whereas polyethylene glycol-conjugated hemoglobin showed intermediate toxicity. PNPH was not neurotoxic (p < .05 vs. bovine hemoglobin and polyethylene glycol hemoglobin; all concentrations). PNPH conferred neuroprotection in in vitro neuronal injury (glutamate/glycine exposure and neuronal stretch), as assessed via lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl-]-2,5-diphenyltetrazolium bromide (all p < .05 vs. control). C57BL6 mice received controlled cortical impact followed by hemorrhagic hypotension (2 mL/100 g, mean arterial blood pressure ∼35-40 mm Hg) for 90 min. Mice were resuscitated (mean arterial blood pressure >50 mm Hg for 30 min) with lactated Ringers, Hextend, or PNPH, and then shed blood was reinfused. Mean arterial blood pressures, resuscitation volumes, blood gasses, glucose, and lactate were recorded. Brain sections at 7 days were examined via hematoxylin and eosin and Fluoro-Jade C (identifying dying neurons) staining in CA1 and CA3 hippocampus. Resuscitation with PNPH or Hextend required less volume than lactated Ringers (both p < .05). PNPH but not Hextend improved mean arterial blood pressure vs. lactated Ringers (p < .05). Mice resuscitated with PNPH had fewer Fluoro-Jade C positive neurons in CA1 vs. Hextend and lactated Ringers, and CA3 vs. Hextend (p < .05). Conclusions: PNPH is a novel neuroprotective hemoglobin-based oxygen carrier in vitro and in vivo that may offer unique advantages for traumatic brain injury resuscitation.
AB - Objective: Resuscitation of hemorrhagic hypotension after traumatic brain injury is challenging. A hemoglobin-based oxygen carrier may offer advantages. The novel therapeutic hemoglobin-based oxygen carrier, polynitroxylated pegylated hemoglobin (PNPH), may represent a neuroprotective hemoglobin-based oxygen carrier for traumatic brain injury resuscitation. Hypotheses: 1) PNPH is a unique non-neurotoxic hemoglobin-based oxygen carrier in neuronal culture and is neuroprotective in in vitro neuronal injury models. 2) Resuscitation with PNPH would require less volume to restore mean arterial blood pressure than lactated Ringers or Hextend and confer neuroprotection in a mouse model of traumatic brain injury plus hemorrhagic hypotension. Design: Prospective randomized, controlled experimental study. Setting: University center. Measurements and Main Results: In rat primary cortical neuron cultures, control bovine hemoglobin was neurotoxic (lactate dehydrogenase release; 3-[4,5-dimethylthiazol-2-yl-]-2,5-diphenyltetrazolium bromide assay) at concentrations from 12.5 to 0.625 μM, whereas polyethylene glycol-conjugated hemoglobin showed intermediate toxicity. PNPH was not neurotoxic (p < .05 vs. bovine hemoglobin and polyethylene glycol hemoglobin; all concentrations). PNPH conferred neuroprotection in in vitro neuronal injury (glutamate/glycine exposure and neuronal stretch), as assessed via lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl-]-2,5-diphenyltetrazolium bromide (all p < .05 vs. control). C57BL6 mice received controlled cortical impact followed by hemorrhagic hypotension (2 mL/100 g, mean arterial blood pressure ∼35-40 mm Hg) for 90 min. Mice were resuscitated (mean arterial blood pressure >50 mm Hg for 30 min) with lactated Ringers, Hextend, or PNPH, and then shed blood was reinfused. Mean arterial blood pressures, resuscitation volumes, blood gasses, glucose, and lactate were recorded. Brain sections at 7 days were examined via hematoxylin and eosin and Fluoro-Jade C (identifying dying neurons) staining in CA1 and CA3 hippocampus. Resuscitation with PNPH or Hextend required less volume than lactated Ringers (both p < .05). PNPH but not Hextend improved mean arterial blood pressure vs. lactated Ringers (p < .05). Mice resuscitated with PNPH had fewer Fluoro-Jade C positive neurons in CA1 vs. Hextend and lactated Ringers, and CA3 vs. Hextend (p < .05). Conclusions: PNPH is a novel neuroprotective hemoglobin-based oxygen carrier in vitro and in vivo that may offer unique advantages for traumatic brain injury resuscitation.
KW - Blast injury
KW - Blood substitute
KW - Head injury
KW - Hemoglobin based oxygen carrier
KW - Hemorrhagic shock
KW - Nitric oxide
KW - Nitroxide
KW - Oxidative stress
KW - Polyethylene glycol
KW - Polynitroxylation
KW - Polytrauma
KW - Superoxide
UR - https://digitalcommons.georgiasouthern.edu/physics-facpubs/34
U2 - 10.1097/CCM.0b013e318206b1fa
DO - 10.1097/CCM.0b013e318206b1fa
M3 - Article
SN - 0090-3493
VL - 39
JO - Critical Care Medicine
JF - Critical Care Medicine
ER -