TY - JOUR
T1 - Predation and Cryptic Coloration in a Managed Landscape
AU - Orton, Richard William
AU - McElroy, Eric J.
AU - McBrayer, Lance D.
N1 - Publisher Copyright:
© 2018, Springer International Publishing AG, part of Springer Nature.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - Protective forms of animal color, such as crypsis, are thought to reduce the probability of detection by visual predators. However, because crypsis is ostensibly intuitive, the working hypothesis of cryptic coloration is seldom tested. Additionally because crypsis is a background-specific adaptation, events which alter habitat structure and substrate composition are likely to affect rates of predation on cryptic animals; animal colors that are cryptic against one visual background may be conspicuous against different visual backgrounds. Populations of Sceloporus woodi, a cryptic diurnal lizard, occupy clear-cut stands of sand pine scrub and prescribe-burned longleaf pine habitat within the Ocala National Forest. Here, we used a combination of clay models resembling S. woodi, and spectral analysis, to examine the effects of spatial heterogeneity and model-substrate contrast on rates of predation. The rate of attack on clay models differed between substrate types and habitats, and was highest when clay models were conspicuous against the local visual background. The dorsal color of models greatly contrasted open sand and dead wood, but had similar reflectance values to leaf litter, suggesting that models were most cryptic on leaf litter. We conclude that crypsis is adaptive in this species, and that variation in rates of attack between sampling locations is related to changes in substrate composition due to management history. For instance, the data suggest that the rate of attack on clay models would decrease in response to succession in sand pine scrub, because aging in sand pine scrub results in increased amounts of leaf litter and decreased amounts of open sand. Overall, the results of this study support the theory of protective coloration.
AB - Protective forms of animal color, such as crypsis, are thought to reduce the probability of detection by visual predators. However, because crypsis is ostensibly intuitive, the working hypothesis of cryptic coloration is seldom tested. Additionally because crypsis is a background-specific adaptation, events which alter habitat structure and substrate composition are likely to affect rates of predation on cryptic animals; animal colors that are cryptic against one visual background may be conspicuous against different visual backgrounds. Populations of Sceloporus woodi, a cryptic diurnal lizard, occupy clear-cut stands of sand pine scrub and prescribe-burned longleaf pine habitat within the Ocala National Forest. Here, we used a combination of clay models resembling S. woodi, and spectral analysis, to examine the effects of spatial heterogeneity and model-substrate contrast on rates of predation. The rate of attack on clay models differed between substrate types and habitats, and was highest when clay models were conspicuous against the local visual background. The dorsal color of models greatly contrasted open sand and dead wood, but had similar reflectance values to leaf litter, suggesting that models were most cryptic on leaf litter. We conclude that crypsis is adaptive in this species, and that variation in rates of attack between sampling locations is related to changes in substrate composition due to management history. For instance, the data suggest that the rate of attack on clay models would decrease in response to succession in sand pine scrub, because aging in sand pine scrub results in increased amounts of leaf litter and decreased amounts of open sand. Overall, the results of this study support the theory of protective coloration.
KW - Differential predation
KW - Habitat alteration
KW - Protective coloration
KW - Selection pressure
KW - Visual background
UR - https://digitalcommons.georgiasouthern.edu/biology-facpubs/195
UR - https://doi.org/10.1007/s10682-018-9931-x
U2 - 10.1007/s10682-018-9931-x
DO - 10.1007/s10682-018-9931-x
M3 - Article
SN - 0269-7653
VL - 32
JO - Evolutionary Ecology
JF - Evolutionary Ecology
ER -