Primary Spaces

Research output: Contribution to conferencePresentation

Abstract

We call a Hamiltonian N-space primary if its equivariant momentum map is onto a single coadjoint orbit, U. In other words, such a space is as far as can be from multiplicity-free. When N is a Heisenberg group, Souriau’s ‘barycentric decomposition theorem’ shows that all primary spaces are products of (coverings of) U with trivial N-spaces. For general N, the question whether such a factorization survives has long been open. In the present work we give 1) examples where factorization fails, and 2) a structure theorem extending Souriau’s to general N. This provides the missing piece for a full ‘Mackey theory’ of Hamiltonian G-spaces, where G is an overgroup in which N is normal.
Original languageAmerican English
StatePublished - Sep 30 2012
EventGone Fishing: Poisson Geometry Conference - Berkeley, United States
Duration: Nov 8 2014Nov 9 2014

Conference

ConferenceGone Fishing
Country/TerritoryUnited States
CityBerkeley
Period11/8/1411/9/14

Keywords

  • Primary spaces

DC Disciplines

  • Mathematics

Fingerprint

Dive into the research topics of 'Primary Spaces'. Together they form a unique fingerprint.

Cite this