Abstract
Human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein 7 (NCp7), a zinc finger protein, plays critical roles in viral replication and maturation and is an attractive target for drug development. However, the development of drug-like molecules that inhibit NCp7 has been a significant challenge. In this study, a series of novel 2-mercaptobenzamide prodrugs were investigated for anti-HIV activity in the context of NCp7 inactivation. The molecules were synthesized from the corresponding thiosalicylic acids, and they are all crystalline solids and stable at room temperature. Derivatives with a range of amide side chains and aromatic substituents were synthesized and screened for anti-HIV activity. Wide ranges of antiviral activity were observed, with IC50 values ranging from 1 to 100 μm depending on subtle changes to the substituents on the aromatic ring and side chain. Results from these structure–activity relationships were fit to a probable mode of intracellular activation and interaction with NCp7 to explain variations in antiviral activity. Our strategy to make a series of mercaptobenzamide prodrugs represents a general new direction to make libraries that can be screened for anti-HIV activity.
Original language | English |
---|---|
Pages (from-to) | 714-721 |
Number of pages | 8 |
Journal | ChemMedChem |
Volume | 12 |
Issue number | 10 |
DOIs | |
State | Published - May 22 2017 |
Keywords
- antiviral agents
- HIV
- mercaptobenzamides
- nucleocapsid protein 7
- prodrugs