TY - JOUR
T1 - Quantitative Reasoning Learning Progressions in Environmental Science: Rasch Analysis and Student Learning
AU - Forrester, Jennifer
AU - Mayes, Robert
AU - Rittschof, Kent A.
AU - Schuttlefield Christus, Jennifer D
AU - Peterson, Franziska
PY - 2015/4/13
Y1 - 2015/4/13
N2 - Presented at the National Association for Research in Science Teaching NARST Link to Program: https://narst.org/sites/default/files/2019-07/2015_Program.pdf Link to Abstracts: https://narst.org/sites/default/files/2019-07/2015_Abstracts.pdf Abstract: The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR) learning progression, with associated QR assessments in the content areas of biodiversity, water, and carbon, was developed based on three QR progress variables: quantification act, quantitative interpretation, and quantitative modeling. Diagnostic instruments were developed specifically for the progress variable quantitative interpretation (QI), each consisting of 96 Likert scale items. Each content version of the instrument focused on three scale levels (macro scale, micro scale, and landscape scale) and four elements of QI identified in prior research (trend, translation, prediction, and revision). The QI assessments were completed by 362, 6th to 12th grade students in three U.S. states. Rasch (1960/1980) measurement was used to determine item and person measures for the QI instruments, both to examine validity and reliability characteristics of the instrument administration and inform the evolution of the learning progression. Rasch methods allowed identification of several trends in student learning of QI and learning progression evolution.. Rasch diagnostics also indicated favorable levels of instrument reliability and appropriate targeting of item abilities to student abilities for the majority of participants.
AB - Presented at the National Association for Research in Science Teaching NARST Link to Program: https://narst.org/sites/default/files/2019-07/2015_Program.pdf Link to Abstracts: https://narst.org/sites/default/files/2019-07/2015_Abstracts.pdf Abstract: The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR) learning progression, with associated QR assessments in the content areas of biodiversity, water, and carbon, was developed based on three QR progress variables: quantification act, quantitative interpretation, and quantitative modeling. Diagnostic instruments were developed specifically for the progress variable quantitative interpretation (QI), each consisting of 96 Likert scale items. Each content version of the instrument focused on three scale levels (macro scale, micro scale, and landscape scale) and four elements of QI identified in prior research (trend, translation, prediction, and revision). The QI assessments were completed by 362, 6th to 12th grade students in three U.S. states. Rasch (1960/1980) measurement was used to determine item and person measures for the QI instruments, both to examine validity and reliability characteristics of the instrument administration and inform the evolution of the learning progression. Rasch methods allowed identification of several trends in student learning of QI and learning progression evolution.. Rasch diagnostics also indicated favorable levels of instrument reliability and appropriate targeting of item abilities to student abilities for the majority of participants.
UR - https://digitalcommons.georgiasouthern.edu/teach-secondary-facpres/142
M3 - Article
JO - National Association for Research in Science Teaching NARST
JF - National Association for Research in Science Teaching NARST
ER -