Abstract
<div class="line" id="line-5"> This is joint work with Doron Zeilberger. Let <span style="font-size: 103%; font-family: MathJax_Math;"> p </span> <span style="font-size: 70.7%; font-family: MathJax_Math;"> m </span> <span style="font-size: 103%; font-family: MathJax_Main;"> ( </span> <span style="font-size: 103%; font-family: MathJax_Math;"> n </span> <span style="font-size: 103%; font-family: MathJax_Main;"> ) </span> denote the number of partitions of <span style="font-size: 103%; font-family: MathJax_Math;"> n </span> with at most <span style="font-size: 103%; font-family: MathJax_Math;"> m </span> summands. The generating function of <span style="font-size: 103%; font-family: MathJax_Math;"> p </span> <span style="font-size: 70.7%; font-family: MathJax_Math;"> m </span> <span style="font-size: 103%; font-family: MathJax_Main;"> ( </span> <span style="font-size: 103%; font-family: MathJax_Math;"> n </span> <span style="font-size: 103%; font-family: MathJax_Main;"> ) </span> is <span style="font-size: 103%; font-family: MathJax_Math;"> f </span> <span style="font-size: 70.7%; font-family: MathJax_Math;"> m </span> <span style="font-size: 103%; font-family: MathJax_Main;"> ( </span> <span style="font-size: 103%; font-family: MathJax_Math;"> x </span> <span style="font-size: 103%; font-family: MathJax_Main;"> )= </span> <span style="font-size: 103%; font-family: MathJax_Size2;"> ∑ </span> <span style="font-size: 70.7%; font-family: MathJax_Math;"> n </span> <span style="font-size: 70.7%; font-family: MathJax_Main;"> ≥0 </span> <span style="font-size: 103%; font-family: MathJax_Math;"> p </span> <span style="font-size: 70.7%; font-family: MathJax_Math;"> m </span> <span style="font-size: 103%; font-family: MathJax_Main;"> ( </span> <span style="font-size: 103%; font-family: MathJax_Math;"> n </span> <span style="font-size: 103%; font-family: MathJax_Main;"> ) </span> <span style="font-size: 103%; font-family: MathJax_Math;"> x </span> <span style="font-size: 70.7%; font-family: MathJax_Math;"> n </span> <span style="font-size: 103%; font-family: MathJax_Main;"> =1/(1− </span> <span style="font-size: 103%; font-family: MathJax_Math;"> x </span> <span style="font-size: 103%; font-family: MathJax_Main;"> )(1− </span> <span style="font-size: 103%; font-family: MathJax_Math;"> x </span> <span style="font-size: 70.7%; font-family: MathJax_Main;"> 2 </span> <span style="font-size: 103%; font-family: MathJax_Main;"> )⋯(1− </span> <span style="font-size: 103%; font-family: MathJax_Math;"> x </span> <span style="font-size: 70.7%; font-family: MathJax_Math;"> m </span> <span style="font-size: 103%; font-family: MathJax_Main;"> ). </span></div><div class="line" id="line-47"> <br/></div><div class="line" id="line-49"> For any fixed <span style="font-size: 103%; font-family: MathJax_Math;"> m </span> , it is theoretically straightforward to find the partial fraction decomposition of the generating function for <span style="font-size: 103%; font-family: MathJax_Math;"> p </span> <span style="font-size: 70.7%; font-family: MathJax_Math;"> m </span> <span style="font-size: 103%; font-family: MathJax_Main;"> ( </span> <span style="font-size: 103%; font-family: MathJax_Math;"> n </span> <span style="font-size: 103%; font-family: MathJax_Main;"> ). </span> Rademacher made a beautiful and natural conjecture concerning the limiting behavior of the coefficients in the partial fraction decomposition of <span style="font-size: 103%; font-family: MathJax_Math;"> f </span> <span style="font-size: 70.7%; font-family: MathJax_Math;"> m </span> <span style="font-size: 103%; font-family: MathJax_Main;"> ( </span> <span style="font-size: 103%; font-family: MathJax_Math;"> x </span> <span style="font-size: 103%; font-family: MathJax_Main;"> ) </span> as <span style="font-size: 103%; font-family: MathJax_Math;"> m </span> <span style="font-size: 103%; font-family: MathJax_Main;"> →∞ </span> , which was published posthumously in 1973. Little progress had been made on this conjecture until just recently, perhaps in large part due to the difficulty of actually calculating Rademacher's coefficients for even moderately large values of <span style="font-size: 103%; font-family: MathJax_Math;"> m </span> <span style="font-size: 103%; font-family: MathJax_Main;"> . </span> Zeilberger and I found and implemented a fast algorithm for computing Rademacher's coefficients, and as a result of the data we collected, it now seems quite clear that Rademacher's conjecture must be FALSE! We present some new theorems and conjectures concerning the behavior of Rademacher's coefficients.</div>
Original language | American English |
---|---|
State | Published - Nov 5 2012 |
Event | Ramanujan 125 Conference - Gainsville, FL Duration: Nov 5 2012 → … |
Conference
Conference | Ramanujan 125 Conference |
---|---|
Period | 11/5/12 → … |
Keywords
- Infinite partial fractions
- Rademacher
DC Disciplines
- Mathematics