Rademacher’s Infinite Partial Fractions Conjecture Is (Almost Certainly) False

Andrew Sills, Doron Zeilberger

Research output: Contribution to conferencePresentation

Abstract

<div class="line" id="line-5"> This is joint work with Doron Zeilberger. Let <span style="font-family: MathJax_Math; font-size: 103%;"> p </span> <span style="font-family: MathJax_Math; font-size: 70.7%;"> m </span> <span style="font-family: MathJax_Main; font-size: 103%;"> ( </span> <span style="font-family: MathJax_Math; font-size: 103%;"> n </span> <span style="font-family: MathJax_Main; font-size: 103%;"> ) </span> denote the number of partitions of <span style="font-family: MathJax_Math; font-size: 103%;"> n </span> with at most <span style="font-family: MathJax_Math; font-size: 103%;"> m </span> summands. The generating function of <span style="font-family: MathJax_Math; font-size: 103%;"> p </span> <span style="font-family: MathJax_Math; font-size: 70.7%;"> m </span> <span style="font-family: MathJax_Main; font-size: 103%;"> ( </span> <span style="font-family: MathJax_Math; font-size: 103%;"> n </span> <span style="font-family: MathJax_Main; font-size: 103%;"> ) </span> is</div><div class="line" id="line-226" style="text-align: center;"> <span style="font-family: MathJax_Math; font-size: 103%;"> f </span> <span style="font-family: MathJax_Math; font-size: 70.7%;"> m </span> <span style="font-family: MathJax_Main; font-size: 103%;"> ( </span> <span style="font-family: MathJax_Math; font-size: 103%;"> x </span> <span style="font-family: MathJax_Main; font-size: 103%;"> )= </span> <span style="font-family: MathJax_Size2; font-size: 103%;"> &sum; </span> <span style="font-family: MathJax_Math; font-size: 70.7%;"> n </span> <span style="font-family: MathJax_Main; font-size: 70.7%;"> &ge;0 </span> <span style="font-family: MathJax_Math; font-size: 103%;"> p </span> <span style="font-family: MathJax_Math; font-size: 70.7%;"> m </span> <span style="font-family: MathJax_Main; font-size: 103%;"> ( </span> <span style="font-family: MathJax_Math; font-size: 103%;"> n </span> <span style="font-family: MathJax_Main; font-size: 103%;"> ) </span> <span style="font-family: MathJax_Math; font-size: 103%;"> x </span> <span style="font-family: MathJax_Math; font-size: 70.7%;"> n </span> <span style="font-family: MathJax_Main; font-size: 103%;"> =1/(1&minus; </span> <span style="font-family: MathJax_Math; font-size: 103%;"> x </span> <span style="font-family: MathJax_Main; font-size: 103%;"> )(1&minus; </span> <span style="font-family: MathJax_Math; font-size: 103%;"> x </span> <span style="font-family: MathJax_Main; font-size: 70.7%;"> 2 </span> <span style="font-family: MathJax_Main; font-size: 103%;"> )&ctdot;(1&minus; </span> <span style="font-family: MathJax_Math; font-size: 103%;"> x </span> <span style="font-family: MathJax_Math; font-size: 70.7%;"> m </span> <span style="font-family: MathJax_Main; font-size: 103%;"> ). </span></div><div class="line" id="line-833" style="text-align: center;"> <br/></div><div class="line" id="line-576"> For any fixed <span style="font-family: MathJax_Math; font-size: 103%;"> m </span> , it is theoretically straightforward to find the partial fraction decomposition of the generating function for <span style="font-family: MathJax_Math; font-size: 103%;"> p </span> <span style="font-family: MathJax_Math; font-size: 70.7%;"> m </span> <span style="font-family: MathJax_Main; font-size: 103%;"> ( </span> <span style="font-family: MathJax_Math; font-size: 103%;"> n </span> <span style="font-family: MathJax_Main; font-size: 103%;"> ). </span> Rademacher made a beautiful and natural conjecture concerning the limiting behavior of the coefficients in the partial fraction decomposition of <span style="font-family: MathJax_Math; font-size: 103%;"> f </span> <span style="font-family: MathJax_Math; font-size: 70.7%;"> m </span> <span style="font-family: MathJax_Main; font-size: 103%;"> ( </span> <span style="font-family: MathJax_Math; font-size: 103%;"> x </span> <span style="font-family: MathJax_Main; font-size: 103%;"> ) </span> as <span style="font-family: MathJax_Math; font-size: 103%;"> m </span> <span style="font-family: MathJax_Main; font-size: 103%;"> &rarr;&infin; </span> , which was published posthumously in 1973. Little progress had been made on this conjecture until just recently, perhaps in large part due to the difficulty of actually calculating Rademacher's coefficients for even moderately large values of <span style="font-family: MathJax_Math; font-size: 103%;"> m </span> <span style="font-family: MathJax_Main; font-size: 103%;"> . </span> Zeilberger and I found and implemented a fast algorithm for computing Rademacher's coefficients, and as a result of the data we collected, it now seems quite clear that Rademacher's conjecture must be FALSE! We present some new theorems and conjectures concerning the behavior of Rademacher's coefficients.</div>
Original languageAmerican English
StatePublished - Mar 22 2012
EventUniversity of Florida Number Theory Seminar - Gainsville, FL
Duration: Mar 22 2012 → …

Conference

ConferenceUniversity of Florida Number Theory Seminar
Period03/22/12 → …

Keywords

  • Infinite partial fractions
  • Number theory
  • Rademacher

DC Disciplines

  • Mathematics

Fingerprint

Dive into the research topics of 'Rademacher’s Infinite Partial Fractions Conjecture Is (Almost Certainly) False'. Together they form a unique fingerprint.

Cite this