Reduction of BVI noise using a leading edge air mass injection concept; a numerical study using large-eddy simulation

Research output: Contribution to book or proceedingConference articlepeer-review

Abstract

A novel technique regarding the reduction of helicopter blade-vortex interaction noise is proposed. The proposed technique is based on the idea of injecting air at the leading edge of the blade to alter the vortex characteristics (strength and core size). The numerical investigations are performed using the large-eddy simulation (LES) approach. The simulations were performed for a Reynolds number, Re = 1.3 × 106, based on the NACA0012 airfoil chord and free-stream velocity. The present study shows that by injecting air at the leading edge of the blade, the influence of blade-vortex interaction on the aerodynamic coefficients and aeroacoustic noise is significantly reduced.

Original languageEnglish
Title of host publication15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781563479748
DOIs
StatePublished - 2009

Publication series

Name15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)

Fingerprint

Dive into the research topics of 'Reduction of BVI noise using a leading edge air mass injection concept; a numerical study using large-eddy simulation'. Together they form a unique fingerprint.

Cite this