Abstract
This article is intended to investigate the performance of two types of stratified regression estimators, namely the separate and the combined estimator, using stratified ranked set sampling (SRSS), introduced by Samawi (1996). The expressions for mean and variance of the proposed estimates are derived and are shown to be unbiased. A simulation study is designed to compare the efficiency of SRSS relative to other sampling procedure under varying model scenarios. Our investigation indicates that the regression estimator of the population mean obtained through an SRSS becomes more efficient than the crude sample mean estimator using stratified simple random sampling. These findings are also illustrated with the help of a data set on bilirubin levels in babies in a neonatal intensive care unit.
Original language | American English |
---|---|
State | Published - Apr 15 2014 |
Event | Georgia Southern University Research Symposium - Duration: Jan 1 2021 → … |
Conference
Conference | Georgia Southern University Research Symposium |
---|---|
Period | 01/1/21 → … |
Keywords
- Regression estimators
- Stratified ranked set sampling
- Bilirubin levels
- Jaundice babies
- NICU
DC Disciplines
- Biostatistics
- Public Health