Relationship of proprioception, cutaneous sensitivity, and muscle strength with the balance control among older adults

Qipeng Song, Xinyan Zhang, Min Mao, Wei Sun, Cui Zhang, Yan Chen, Li Li

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

Background: Balance impairment is one of the strongest risk factors for falls. Proprioception, cutaneous sensitivity, and muscle strength are 3 important contributors to balance control in older adults. The relationship that dynamic and static balance control has to proprioception, cutaneous sensitivity, and muscle strength is still unclear. This study was performed to investigate the relationship these contributors have to dynamic and static balance control. Methods: A total of 164 older adults (female = 89, left dominant = 15, age: 73.5 ± 7.8 years, height: 161.6 ± 7.1 cm, weight: 63.7 ± 8.9 kg, mean ± SD) participated in this study. It tested the proprioception of their knee flexion/extension and ankle dorsi/plantarflexion, along with cutaneous sensitivity at the great toe, first and fifth metatarsals, arch, and heel, and the muscle strength of their ankle dorsi/plantarflexion and hip abduction. The Berg Balance Scale (BBS) and the root mean square (RMS) of the center of pressure (CoP) were collected as indications of dynamic and static balance control. A partial correlation was used to determine the relationship between the measured outcomes variables (BBS and CoP-RMS) and the proprioception, cutaneous sensitivity, and muscle strength variables. Results: Proprioception of ankle plantarflexion (r = –0.306, p = 0.002) and dorsiflexion (r = –0.217, p = 0.030), and muscle strength of ankle plantarflexion (r = 0.275, p = 0.004), dorsiflexion (r = 0.369, p < 0.001), and hip abduction (r = 0.342, p < 0.001) were weakly to moderately correlated with BBS. Proprioception of ankle dorsiflexion (r = 0.218, p = 0.020) and cutaneous sensitivity at the great toe (r = 0.231, p = 0.041) and arch (r = 0.285, p = 0.002) were weakly correlated with CoP-RMS in the anteroposterior direction. Proprioception of ankle dorsiflexion (r = 0.220, p = 0.035), knee flexion (r = 0.308, p = 0.001) and extension (r = 0.193, p = 0.040), and cutaneous sensitivity at the arch (r = 0.206, p = 0.028) were weakly to moderately correlated with CoP-RMS in the mediolateral direction. Conclusion: There is a weak-to-moderate relationship between proprioception and dynamic and static balance control, a weak relationship between cutaneous sensitivity and static balance control, and a weak-to-moderate relationship between muscle strength and dynamic balance control.

Original languageEnglish
Pages (from-to)585-593
Number of pages9
JournalJournal of Sport and Health Science
Volume10
Issue number5
DOIs
StatePublished - Sep 2021

Scopus Subject Areas

  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Keywords

  • Body stability
  • Dynamic balance
  • Kinesthesia
  • Plantar sensation
  • Postural control

Fingerprint

Dive into the research topics of 'Relationship of proprioception, cutaneous sensitivity, and muscle strength with the balance control among older adults'. Together they form a unique fingerprint.

Cite this