TY - GEN
T1 - RUSH
T2 - Smart Structures and NDE for Energy Systems and Industry 4.0 2019
AU - Saadatzi, Mohammad Sadegh
AU - Ahmed, Hossain
AU - Indaleeb, Mustahseen Mobashwer
AU - Banerjee, Sourav
N1 - Publisher Copyright:
© 2019 SPIE.
PY - 2019
Y1 - 2019
N2 - A high percentage of failures and damage propagation in materials and sensors employed in harsh industrial environments and airborne electronics is due to mechanical failure under tension and compression loads. Therefore, it is of paramount importance to test equipment reliability and ensure its survival in long missions in the presence of physical fluctuations. Mechanical testing systems (MTS) employ mechanical load in laboratories and all the scanning tests are performed after removing the sample from MTS machine. However, more precise tracking of failures and damages is possible only the moment the material is under loads. Hence, to systematically characterize and fully understand damage's behavior, a system capable of Realtime scanning is required. The primary objective of this study is design, fabrication, and testing of a Realtime ultrasonic scanning using hydraulic arms (RUSH), which provides mechanical loads using hydraulic arms on the specimen and simultaneously scans it with ultrasonic scanning system. RUSH consists of two hydraulic pistons (for mechanical loading) and a main control unit that accurately calculates and sets the actuators' input signals in order to generate desired load on the materials. In this paper, the system's architecture, its mechanical structure, and electrical components are described. In addition, to verify RUSH's performance, various experiments are carried out using unidirectional composites.
AB - A high percentage of failures and damage propagation in materials and sensors employed in harsh industrial environments and airborne electronics is due to mechanical failure under tension and compression loads. Therefore, it is of paramount importance to test equipment reliability and ensure its survival in long missions in the presence of physical fluctuations. Mechanical testing systems (MTS) employ mechanical load in laboratories and all the scanning tests are performed after removing the sample from MTS machine. However, more precise tracking of failures and damages is possible only the moment the material is under loads. Hence, to systematically characterize and fully understand damage's behavior, a system capable of Realtime scanning is required. The primary objective of this study is design, fabrication, and testing of a Realtime ultrasonic scanning using hydraulic arms (RUSH), which provides mechanical loads using hydraulic arms on the specimen and simultaneously scans it with ultrasonic scanning system. RUSH consists of two hydraulic pistons (for mechanical loading) and a main control unit that accurately calculates and sets the actuators' input signals in order to generate desired load on the materials. In this paper, the system's architecture, its mechanical structure, and electrical components are described. In addition, to verify RUSH's performance, various experiments are carried out using unidirectional composites.
UR - http://www.scopus.com/inward/record.url?scp=85069685221&partnerID=8YFLogxK
U2 - 10.1117/12.2514786
DO - 10.1117/12.2514786
M3 - Conference article
AN - SCOPUS:85069685221
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Smart Structures and NDE for Energy Systems and Industry 4.0
A2 - Meyendorf, Norbert G.
A2 - Gath, Kerrie
A2 - Niezrecki, Christopher
PB - SPIE
Y2 - 4 March 2019 through 5 March 2019
ER -