TY - JOUR
T1 - Sharp weak type estimates for a family of Córdoba bases
AU - Hagelstein, Paul
AU - Stokolos, Alex
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Universitat de Barcelona.
PY - 2023/9
Y1 - 2023/9
N2 - Let B be a collection of rectangular parallelepipeds in R3 whose sides are parallel to the coordinate axes and such that B consists of parallelepipeds with sidelengths of the form s, t, 2 Nst, where s, t> 0 and N lies in a nonempty subset S of the natural numbers. In this paper, we prove the following: If S is a finite set, then the associated geometric maximal operator MB satisfies the weak type estimate |{x∈R3:MBf(x)>α}|≤C∫R3|f|α(1+log+|f|α)but does not satisfy an estimate of the form |{x∈R3:MBf(x)>α}|≤C∫R3ϕ(|f|α)for any convex increasing function ϕ: [0 , ∞) → [0 , ∞) satisfying the condition limx→∞ϕ(x)x(log(1+x))=0.Alternatively, if S is an infinite set, then the associated geometric maximal operator MB satisfies the weak type estimate |{x∈R3:MBf(x)>α}|≤C∫R3|f|α(1+log+|f|α)2but does not satisfy an estimate of the form |{x∈R3:MBf(x)>α}|≤C∫R3ϕ(|f|α)for any convex increasing function ϕ: [0 , ∞) → [0 , ∞) satisfying the condition limx→∞ϕ(x)x(log(1+x))2=0.
AB - Let B be a collection of rectangular parallelepipeds in R3 whose sides are parallel to the coordinate axes and such that B consists of parallelepipeds with sidelengths of the form s, t, 2 Nst, where s, t> 0 and N lies in a nonempty subset S of the natural numbers. In this paper, we prove the following: If S is a finite set, then the associated geometric maximal operator MB satisfies the weak type estimate |{x∈R3:MBf(x)>α}|≤C∫R3|f|α(1+log+|f|α)but does not satisfy an estimate of the form |{x∈R3:MBf(x)>α}|≤C∫R3ϕ(|f|α)for any convex increasing function ϕ: [0 , ∞) → [0 , ∞) satisfying the condition limx→∞ϕ(x)x(log(1+x))=0.Alternatively, if S is an infinite set, then the associated geometric maximal operator MB satisfies the weak type estimate |{x∈R3:MBf(x)>α}|≤C∫R3|f|α(1+log+|f|α)2but does not satisfy an estimate of the form |{x∈R3:MBf(x)>α}|≤C∫R3ϕ(|f|α)for any convex increasing function ϕ: [0 , ∞) → [0 , ∞) satisfying the condition limx→∞ϕ(x)x(log(1+x))2=0.
KW - Differentiation basis
KW - Geometric maximal operator
KW - Maximal functions
UR - http://www.scopus.com/inward/record.url?scp=85131573036&partnerID=8YFLogxK
U2 - 10.1007/s13348-022-00366-5
DO - 10.1007/s13348-022-00366-5
M3 - Article
AN - SCOPUS:85131573036
SN - 0010-0757
VL - 74
SP - 595
EP - 603
JO - Collectanea Mathematica
JF - Collectanea Mathematica
IS - 3
ER -