TY - JOUR
T1 - Sharp Weak Type Estimates for a Family of Soria Bases
AU - Dmitrishin, Dmitry
AU - Hagelstein, Paul
AU - Stokolos, Alex
N1 - Publisher Copyright:
© 2022, Mathematica Josephina, Inc.
PY - 2022/5
Y1 - 2022/5
N2 - Let B be a collection of rectangular parallelepipeds in R3 whose sides are parallel to the coordinate axes and such that B contains parallelepipeds with side lengths of the form s,2Ns,t, where s, t> 0 and N lies in a nonempty subset S of the natural numbers. We show that if S is an infinite set, then the associated geometric maximal operator MB satisfies the weak type estimate |{x∈R3:MBf(x)>α}|≤C∫R3|f|α(1+log+|f|α)2,but does not satisfy an estimate of the form |{x∈R3:MBf(x)>α}|≤C∫R3ϕ(|f|α)for any convex increasing function ϕ: [0 , ∞) → [0 , ∞) satisfying the condition limx→∞ϕ(x)x(log(1+x))2=0.
AB - Let B be a collection of rectangular parallelepipeds in R3 whose sides are parallel to the coordinate axes and such that B contains parallelepipeds with side lengths of the form s,2Ns,t, where s, t> 0 and N lies in a nonempty subset S of the natural numbers. We show that if S is an infinite set, then the associated geometric maximal operator MB satisfies the weak type estimate |{x∈R3:MBf(x)>α}|≤C∫R3|f|α(1+log+|f|α)2,but does not satisfy an estimate of the form |{x∈R3:MBf(x)>α}|≤C∫R3ϕ(|f|α)for any convex increasing function ϕ: [0 , ∞) → [0 , ∞) satisfying the condition limx→∞ϕ(x)x(log(1+x))2=0.
KW - Covering lemmas
KW - Differentiation basis
KW - Maximal functions
KW - Weak type inequalities
UR - http://www.scopus.com/inward/record.url?scp=85126815625&partnerID=8YFLogxK
U2 - 10.1007/s12220-022-00903-5
DO - 10.1007/s12220-022-00903-5
M3 - Article
AN - SCOPUS:85126815625
SN - 1050-6926
VL - 32
JO - Journal of Geometric Analysis
JF - Journal of Geometric Analysis
IS - 5
M1 - 169
ER -