TY - JOUR
T1 - Spatial Variations in the Associations of Birth Weight with Ambient Air Pollution: A Retrospective Study in Georgia, USA
AU - Tu, Jun
AU - Tu, Wei
AU - Tedders, Stuart H.
N1 - Publisher Copyright:
© 2016 Elsevier Ltd.
PY - 2016/7/1
Y1 - 2016/7/1
N2 - Birth weight is an important indicator of overall infant health and a strong predictor of infant morbidity and mortality, and low birth weight (LBW) is a leading cause of infant mortality in the United States. Numerous studies have examined the associations of birth weight with ambient air pollution, but the results were inconsistent. In this study, a spatial statistical technique, geographically weighted regression (GWR) is applied to explore the spatial variations in the associations of birth weight with concentrations of ozone (O3) and fine particulate matter (PM2.5) in the State of Georgia, USA adjusted for gestational age, parity, and six other socioeconomic, behavioral, and land use factors. The results show considerable spatial variations in the associations of birth weight with both pollutants. Significant positive, non-significant, and significant negative relationships between birth weight and concentrations of each air pollutant are all found in different parts of the study area, and the different types of the relationships are affected by the socioeconomic and urban characteristics of the communities where the births are located. The significant negative relationships between birth weight and O3 indicate that O3 is a significant risk factor of LBW and these associations are primarily located in less-urbanized communities. On the other hand, PM2.5 is a significant risk factor of LBW in the more-urbanized communities with higher family income and education attainment. These findings suggest that environmental and health policies should be adjusted to address the different effects of air pollutants on birth outcomes across different types of communities to more effectively and efficiently improve birth outcomes.
AB - Birth weight is an important indicator of overall infant health and a strong predictor of infant morbidity and mortality, and low birth weight (LBW) is a leading cause of infant mortality in the United States. Numerous studies have examined the associations of birth weight with ambient air pollution, but the results were inconsistent. In this study, a spatial statistical technique, geographically weighted regression (GWR) is applied to explore the spatial variations in the associations of birth weight with concentrations of ozone (O3) and fine particulate matter (PM2.5) in the State of Georgia, USA adjusted for gestational age, parity, and six other socioeconomic, behavioral, and land use factors. The results show considerable spatial variations in the associations of birth weight with both pollutants. Significant positive, non-significant, and significant negative relationships between birth weight and concentrations of each air pollutant are all found in different parts of the study area, and the different types of the relationships are affected by the socioeconomic and urban characteristics of the communities where the births are located. The significant negative relationships between birth weight and O3 indicate that O3 is a significant risk factor of LBW and these associations are primarily located in less-urbanized communities. On the other hand, PM2.5 is a significant risk factor of LBW in the more-urbanized communities with higher family income and education attainment. These findings suggest that environmental and health policies should be adjusted to address the different effects of air pollutants on birth outcomes across different types of communities to more effectively and efficiently improve birth outcomes.
KW - Ambient air pollution
KW - Birth weight
KW - Geographically weighted regression
KW - Georgia
KW - Socioeconomic characteristics
KW - Spatial variations
UR - https://digitalcommons.georgiasouthern.edu/geo-facpubs/86
UR - http://dx.doi.org/10.1016/j.envint.2016.04.005
U2 - 10.1016/j.envint.2016.04.005
DO - 10.1016/j.envint.2016.04.005
M3 - Article
SN - 0160-4120
VL - 92
JO - Environment International
JF - Environment International
ER -