TY - JOUR
T1 - Steps toward Unraveling the Structure and Formation of Five Polar Ring Galaxies
AU - Lackey, Kyle E.
AU - Kulkarni, Varsha P.
AU - Aller, Monique C.
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/8
Y1 - 2024/8
N2 - Polar ring galaxies (PRGs) are unusual relative to common galaxies in that they consist of a central host galaxy—usually a gas-poor, early-type S0 or elliptical galaxy—surrounded by a ring of gas, dust and stars that orbit perpendicular to the major axis of the host. Despite the general quiescence of early-type galaxies (ETGs) and the rings’ lack of spiral density waves, PRGs are the sites of significant star formation relative to typical ETGs. To study these structures and improve PRG statistics, we obtained and analyzed infrared (IR) images from the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope, and combined these IR data with archival optical data from both the Sloan Digital Sky Survey and the Hubble Space Telescope, and with optical imaging data we obtained with the Gemini South Observatory. We performed structural decomposition and photometry for five PRGs, and fit the spectral energy distributions (SEDs) of each PRG component to estimate the stellar masses, ages, and other physical properties of the PRG components. We show that PRC B-12 and PRC B-22, both lacking previous analysis, obey trends commonly observed among PRGs. We find that the stellar masses of polar rings can be a significant fraction of the host galaxy’s stellar masses (∼10–30%). We note, however, that our estimates of stellar mass and other physical properties are the results of SED fitting and not direct measurements. Our findings corroborate both previous theoretical expectations and measurements of existing samples of PRGs and indicate the utility of SED fitting in the context of these unusual galaxies, which historically have lacked multi-wavelength photometry of their stellar components. Finally, we outline future improvements needed for more definitive studies of PRGs and their formation scenarios.
AB - Polar ring galaxies (PRGs) are unusual relative to common galaxies in that they consist of a central host galaxy—usually a gas-poor, early-type S0 or elliptical galaxy—surrounded by a ring of gas, dust and stars that orbit perpendicular to the major axis of the host. Despite the general quiescence of early-type galaxies (ETGs) and the rings’ lack of spiral density waves, PRGs are the sites of significant star formation relative to typical ETGs. To study these structures and improve PRG statistics, we obtained and analyzed infrared (IR) images from the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope, and combined these IR data with archival optical data from both the Sloan Digital Sky Survey and the Hubble Space Telescope, and with optical imaging data we obtained with the Gemini South Observatory. We performed structural decomposition and photometry for five PRGs, and fit the spectral energy distributions (SEDs) of each PRG component to estimate the stellar masses, ages, and other physical properties of the PRG components. We show that PRC B-12 and PRC B-22, both lacking previous analysis, obey trends commonly observed among PRGs. We find that the stellar masses of polar rings can be a significant fraction of the host galaxy’s stellar masses (∼10–30%). We note, however, that our estimates of stellar mass and other physical properties are the results of SED fitting and not direct measurements. Our findings corroborate both previous theoretical expectations and measurements of existing samples of PRGs and indicate the utility of SED fitting in the context of these unusual galaxies, which historically have lacked multi-wavelength photometry of their stellar components. Finally, we outline future improvements needed for more definitive studies of PRGs and their formation scenarios.
KW - galaxy formation
KW - irregular galaxies
KW - polar ring galaxies
UR - http://www.scopus.com/inward/record.url?scp=85202635323&partnerID=8YFLogxK
U2 - 10.3390/galaxies12040042
DO - 10.3390/galaxies12040042
M3 - Article
AN - SCOPUS:85202635323
SN - 2075-4434
VL - 12
JO - Galaxies
JF - Galaxies
IS - 4
M1 - 42
ER -