Abstract
Broadband near-infrared (NIR)-emitting phosphors are key for next-generation smart NIR light sources based on blue LEDs. To achieve excellent NIR phosphors, we propose a strategy of enhancing the crystallinity, modifying the micromorphology, and maintaining the valence state of Cr3+ in Ca3Sc2Si3O12 garnet (CSSG). By adding fluxes and sintering in a reducing atmosphere, the internal quantum efficiency (IQE) is greatly enhanced to 92.3%. The optimized CSSG:6%Cr3+ exhibits excellent thermal stability. At 150 °C, 97.4% of the NIR emission at room temperature can be maintained. The fabricated NIR-LED device emits a high optical power of 109.9 mW at 520 mA. The performances of both the achieved phosphor and the NIR-LED are almost the best results until now. The mechanism for the optimization is investigated. An application of the NIR-LED light source is demonstrated.
Original language | English |
---|---|
Article number | 86 |
Journal | Light: Science and Applications |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2020 |
Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics