The Influence of Interspecific Competition and Host Preference on the Phylogeography of Two African Ixodid Tick Species

Nídia Cangi, Ivan G. Horak, Dmitry A. Apanaskevich, Sonja Matthee, Luís C.B.G. das Neves, Agustín Estrada-Peña, Conrad A. Matthee

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

A comparative phylogeographic study on two economically important African tick species, Amblyomma hebraeum and Hyalomma rufipes was performed to test the influence of host specificity and host movement on dispersion. Pairwise AMOVA analyses of 277 mtDNA COI sequences supported significant population differentiation among the majority of sampling sites. The geographic mitochondrial structure was not supported by nuclear ITS-2 sequencing, probably attributed to a recent divergence. The three-host generalist, A. hebraeum, showed less mtDNA geographic structure, and a lower level of genetic diversity, while the more host-specific H. rufipes displayed higher levels of population differentiation and two distinct mtDNA assemblages (one predominantly confined to South Africa/Namibia and the other to Mozambique and East Africa). A zone of overlap is present in southern Mozambique. A mechanistic climate model suggests that climate alone cannot be responsible for the disruption in female gene flow. Our findings furthermore suggest that female gene dispersal of ticks is more dependent on the presence of juvenile hosts in the environment than on the ability of adult hosts to disperse across the landscape. Documented interspecific competition between the juvenile stages of H. rufipes and H. truncatum is implicated as a contributing factor towards disrupting gene flow between the two southern African H. rufipes genetic assemblages.

Original languageEnglish
Article numbere76930
JournalPLoS ONE
Volume8
Issue number10
DOIs
StatePublished - Oct 9 2013

Fingerprint

Dive into the research topics of 'The Influence of Interspecific Competition and Host Preference on the Phylogeography of Two African Ixodid Tick Species'. Together they form a unique fingerprint.

Cite this