TY - JOUR
T1 - The Stochastic Extinction and Stability Conditions for Nonlinear Malaria Epidemics
AU - Wanduku, Divine
N1 - Publisher Copyright:
© 2019 the Author(s).
PY - 2019/1/1
Y1 - 2019/1/1
N2 - The stochastic extinction and stability in the mean of a family of SEIRS malaria models with a general nonlinear incidence rate is presented. The dynamics is driven by independent white noise processes from the disease transmission and natural death rates. The basic reproduction number R∗ 0, the expected survival probability of the plasmodium E(e−(µvT 1+µT2)), and other threshold values are calculated, where µv and µ are the natural death rates of mosquitoes and humans, respectively, and T1 and T2 are the incubation periods of the plasmodium inside the mosquitoes and humans, respectively. A sample Lyapunov exponential analysis for the system is utilized to obtain extinction results. Moreover, the rate of extinction of malaria is estimated, and innovative local Martingale and Lyapunov functional techniques are applied to establish the strong persistence, and asymptotic stability in the mean of the malaria-free steady population. Moreover, for either R∗ 0 < 1, or E(e−(µvT 1+µT2)) < R 1 ∗0 , whenever R∗ 0 ≥ 1, respectively, extinction of malaria occurs. Furthermore, the robustness of these threshold conditions to the intensity of noise from the disease transmission rate is exhibited. Numerical simulation results are presented.
AB - The stochastic extinction and stability in the mean of a family of SEIRS malaria models with a general nonlinear incidence rate is presented. The dynamics is driven by independent white noise processes from the disease transmission and natural death rates. The basic reproduction number R∗ 0, the expected survival probability of the plasmodium E(e−(µvT 1+µT2)), and other threshold values are calculated, where µv and µ are the natural death rates of mosquitoes and humans, respectively, and T1 and T2 are the incubation periods of the plasmodium inside the mosquitoes and humans, respectively. A sample Lyapunov exponential analysis for the system is utilized to obtain extinction results. Moreover, the rate of extinction of malaria is estimated, and innovative local Martingale and Lyapunov functional techniques are applied to establish the strong persistence, and asymptotic stability in the mean of the malaria-free steady population. Moreover, for either R∗ 0 < 1, or E(e−(µvT 1+µT2)) < R 1 ∗0 , whenever R∗ 0 ≥ 1, respectively, extinction of malaria occurs. Furthermore, the robustness of these threshold conditions to the intensity of noise from the disease transmission rate is exhibited. Numerical simulation results are presented.
KW - Epidemics
KW - Nonlinear Malaria
KW - Stability conditions
KW - Stochastic extinction
UR - https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/722
UR - http://www.aimspress.com/article/10.3934/mbe.2019187
U2 - 10.3934/mbe.2019187
DO - 10.3934/mbe.2019187
M3 - Article
SN - 1547-1063
VL - 16
JO - Mathematical Biosciences and Engineering
JF - Mathematical Biosciences and Engineering
ER -