Thermally sensitized membranes for crude oil-water remediation under visible light

Mohammed A. Gondal, Gibum Kwon, Talal F. Qahtan, Mohamed A. Dastageer, Mohammadamin Ezazi, Mohammed Z. Al-Kuban

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Effective remediation of produced water requires separating crude oil-water mixture and removing the dissolved organic pollutants. Membranes with selective wettability for water over oil enable the gravity-driven separation of an oil-water mixture by allowing water to permeate through while repelling oil. However, these membranes are often limited by their inability to remove the dissolved organic pollutants. In this work, a membrane with in-air superhydrophilic and underwater superoleophobic wettability is fabricated by thermal annealing of a stainless steel mesh. The resulting membrane possesses a hierarchical surface texture covered with a photocatalytic oxide layer composed of iron oxide and chromium oxide. The membrane exhibits chemical and mechanical robustness, which makes it suitable for remediation of crude oil and water mixture. Further, after being fouled by crude oil, the membrane can recover its inherent water-rich permeate flux upon visible light irradiation. Finally, the membrane demonstrates that it can separate surfactant-stabilized crude oil-in-water emulsion under gravity and decontaminate water-rich permeate by photocatalytic degradation of dissolved organic pollutants upon continuous irradiation of visible light.

Original languageEnglish
Pages (from-to)48572-48579
Number of pages8
JournalACS Applied Materials and Interfaces
Volume12
Issue number43
DOIs
StatePublished - Oct 28 2020

Keywords

  • Oil-water separation
  • Photocatalysis
  • Produced water
  • Stainless steel mesh
  • Thermal annealing

Fingerprint

Dive into the research topics of 'Thermally sensitized membranes for crude oil-water remediation under visible light'. Together they form a unique fingerprint.

Cite this