Thermoacoustic instabilities of coaxial jet combustor; computational studies using LES

Marcel Ilie, Matthew Chan, Jackson Asiatico, Mosfequr Rahman, Valentin Soloiu

Research output: Contribution to book or proceedingConference articlepeer-review

Abstract

Swirl combustion is encountered in many engineering applications since it provides efficient fuel burning. Experimental studies of turbulent swirl combustion poses challenges due to unsteady nature of the combustion phenomenon. Therefore, computational approaches are a promising alternative for the numerical studies of supersonic combustion. The present studies concerns the computational studies of swirl combustion, particularly the effect of the injection scheme on the combustion efficiency and flame stability. Therefore, the effect of the air-fuel ratio on the combustion efficiency and flame stability is subject of investigation. The combustion efficiency is assessed based on the temperature developed inside the swirl combustor. The computations are carried out using the large-eddy simulation (LES) approach along with the flamelet combustion model. The analysis reveals the unsteady nature of the flame and thus, its departure from the core of the combustor. The analysis also reveals the presence of a region of high level of temperature, NO and CO2, inside the combustor.

Original languageEnglish
Title of host publicationAIAA SciTech Forum and Exposition, 2023
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624106996
DOIs
StatePublished - 2023
EventAIAA SciTech Forum and Exposition, 2023 - Orlando, United States
Duration: Jan 23 2023Jan 27 2023

Publication series

NameAIAA SciTech Forum and Exposition, 2023

Conference

ConferenceAIAA SciTech Forum and Exposition, 2023
Country/TerritoryUnited States
CityOrlando
Period01/23/2301/27/23

Fingerprint

Dive into the research topics of 'Thermoacoustic instabilities of coaxial jet combustor; computational studies using LES'. Together they form a unique fingerprint.

Cite this