TY - GEN
T1 - Thermoacoustic instabilities of coaxial jet combustor; computational studies using LES
AU - Ilie, Marcel
AU - Chan, Matthew
AU - Asiatico, Jackson
AU - Rahman, Mosfequr
AU - Soloiu, Valentin
N1 - Publisher Copyright:
© 2023, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Swirl combustion is encountered in many engineering applications since it provides efficient fuel burning. Experimental studies of turbulent swirl combustion poses challenges due to unsteady nature of the combustion phenomenon. Therefore, computational approaches are a promising alternative for the numerical studies of supersonic combustion. The present studies concerns the computational studies of swirl combustion, particularly the effect of the injection scheme on the combustion efficiency and flame stability. Therefore, the effect of the air-fuel ratio on the combustion efficiency and flame stability is subject of investigation. The combustion efficiency is assessed based on the temperature developed inside the swirl combustor. The computations are carried out using the large-eddy simulation (LES) approach along with the flamelet combustion model. The analysis reveals the unsteady nature of the flame and thus, its departure from the core of the combustor. The analysis also reveals the presence of a region of high level of temperature, NO and CO2, inside the combustor.
AB - Swirl combustion is encountered in many engineering applications since it provides efficient fuel burning. Experimental studies of turbulent swirl combustion poses challenges due to unsteady nature of the combustion phenomenon. Therefore, computational approaches are a promising alternative for the numerical studies of supersonic combustion. The present studies concerns the computational studies of swirl combustion, particularly the effect of the injection scheme on the combustion efficiency and flame stability. Therefore, the effect of the air-fuel ratio on the combustion efficiency and flame stability is subject of investigation. The combustion efficiency is assessed based on the temperature developed inside the swirl combustor. The computations are carried out using the large-eddy simulation (LES) approach along with the flamelet combustion model. The analysis reveals the unsteady nature of the flame and thus, its departure from the core of the combustor. The analysis also reveals the presence of a region of high level of temperature, NO and CO2, inside the combustor.
UR - http://www.scopus.com/inward/record.url?scp=85199534621&partnerID=8YFLogxK
U2 - 10.2514/6.2023-1063
DO - 10.2514/6.2023-1063
M3 - Conference article
AN - SCOPUS:85199534621
SN - 9781624106996
T3 - AIAA SciTech Forum and Exposition, 2023
BT - AIAA SciTech Forum and Exposition, 2023
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA SciTech Forum and Exposition, 2023
Y2 - 23 January 2023 through 27 January 2023
ER -