TY - JOUR
T1 - Two-dimensional model for proton exchange membrane fuel cells
AU - Gurau, Vladimir
AU - Liu, Hongtan
AU - Kakaç, Sadik
N1 - Separation Dept. of Mechanical Engineering, University of Miami, Coral Gables, FL 33124 Current affiliation: Energy Partners, 1501 Northpoint Parkway, Suite 102, West Palm Beach, FL 33407 Search for more papers by this author Dept. of Mechanical Engineering, University of Miami, Coral Gables, FL 33124 Search for more papers by this author Dept.
PY - 1998
Y1 - 1998
N2 - A 2-D mathematical model for the entire sandwich of a proton-exchange membrane fuel cell including the gas channels was developed. The self- consistent model for porous media was used for the equations describing transport phenomena in the membrane, catalyst layers, and gas diffusers, while standard equations of Navier-Stokes, energy transport, continuity, and species concentrations are soloed in the gas channels. A special handling of the transport equations enabled us to use the same numerical method in the unified domain consisting of the gas channels, gas diffusers, catalyst layers and membrane. It also eliminated the need to prescribe arbitrary or approximate boundary conditions at the interfaces between different parts of the fuel cell sandwich. By soloing transport equations, as well as the equations for electrochemical reactions and current density with the membrane phase potential, polarization curves under various operating conditions were obtained. Modeling results compare very well with experimental results from the literature. Oxygen and water vapor mole fraction distributions in the coupled cathode gas channel-gas diffuser were studied for various operating current densities. Liquid water velocity distributions in the membrane and influences of various parameters on the cell performance were also obtained.
AB - A 2-D mathematical model for the entire sandwich of a proton-exchange membrane fuel cell including the gas channels was developed. The self- consistent model for porous media was used for the equations describing transport phenomena in the membrane, catalyst layers, and gas diffusers, while standard equations of Navier-Stokes, energy transport, continuity, and species concentrations are soloed in the gas channels. A special handling of the transport equations enabled us to use the same numerical method in the unified domain consisting of the gas channels, gas diffusers, catalyst layers and membrane. It also eliminated the need to prescribe arbitrary or approximate boundary conditions at the interfaces between different parts of the fuel cell sandwich. By soloing transport equations, as well as the equations for electrochemical reactions and current density with the membrane phase potential, polarization curves under various operating conditions were obtained. Modeling results compare very well with experimental results from the literature. Oxygen and water vapor mole fraction distributions in the coupled cathode gas channel-gas diffuser were studied for various operating current densities. Liquid water velocity distributions in the membrane and influences of various parameters on the cell performance were also obtained.
UR - http://www.scopus.com/inward/record.url?scp=0032467782&partnerID=8YFLogxK
U2 - 10.1002/aic.690441109
DO - 10.1002/aic.690441109
M3 - Article
SN - 0001-1541
VL - 44
SP - 2410
EP - 2422
JO - AIChE Journal
JF - AIChE Journal
IS - 11
ER -