TY - JOUR
T1 - Ultrasonic Evaluation of Laser Scanning Speed Effect on the Spectral Properties of Three-Dimensional-Printed Metal Phononic Crystal Artifacts
AU - Rozin, Enamul Hasan
AU - Sultan, Tipu
AU - Taheri, Hossein
AU - Cetinkaya, Cetin
N1 - Publisher Copyright:
Copyright 2023, Mary Ann Liebert, Inc., publishers.
PY - 2024/6/1
Y1 - 2024/6/1
N2 - Additive manufacturing/three-dimensional printing (AM/3DP) processes promise a flexible production modality to fabricate a complex build directly from its digital design file with minimal postprocessing. However, some critical shortcomings of AM/3DP processes related to the build quality and process repeatability are frequently experienced and reported in the literature. In this study, an in situ real-time nondestructive monitoring framework based on the dispersive properties of phononic crystal artifacts (PCAs) to address such quality challenges is described. Similar to a witness coupon, a PCA is printed alongside a build while it is interrogated and monitored with ultrasound. A PCA is substantially smaller than the actual build. Due to its periodic internal structures, a PCA creates pass and stop bands in its spectral response, which are sensitive to the variations in its process and material parameters. These periodic structures, representing the geometric complexities of an actual build, are designed for a specific monitoring objective(s) in AM/3DP. As a model application, in this demonstration study, the effect of the laser scanning speed of a slective laser melting (SLM) printer on the spectral properties of metal PCAs (mPCAs) is ultrasonically evaluated offline. The dependency of the pressure and shear wave speeds, the apparent Young's and shear moduli, and Poisson's ratio on the scanning speed are quantified, and it is found that they are highly sensitive to the laser scanning speed of an SLM printer. The sensitivity of the peaks of the pressure and shear spectral waveforms acquired for the identical mPCA designs printed on the same build plate with the same process parameters is also quantified. For powder-based AM/3DP technologies, where scanning speed is among the crucial process parameters such as laser power and bed temperature, the reported correlations between scanning speeds and the mechanical and spectral features of the mPCAs are expected to be instrumental in developing in situ real-time monitoring systems.
AB - Additive manufacturing/three-dimensional printing (AM/3DP) processes promise a flexible production modality to fabricate a complex build directly from its digital design file with minimal postprocessing. However, some critical shortcomings of AM/3DP processes related to the build quality and process repeatability are frequently experienced and reported in the literature. In this study, an in situ real-time nondestructive monitoring framework based on the dispersive properties of phononic crystal artifacts (PCAs) to address such quality challenges is described. Similar to a witness coupon, a PCA is printed alongside a build while it is interrogated and monitored with ultrasound. A PCA is substantially smaller than the actual build. Due to its periodic internal structures, a PCA creates pass and stop bands in its spectral response, which are sensitive to the variations in its process and material parameters. These periodic structures, representing the geometric complexities of an actual build, are designed for a specific monitoring objective(s) in AM/3DP. As a model application, in this demonstration study, the effect of the laser scanning speed of a slective laser melting (SLM) printer on the spectral properties of metal PCAs (mPCAs) is ultrasonically evaluated offline. The dependency of the pressure and shear wave speeds, the apparent Young's and shear moduli, and Poisson's ratio on the scanning speed are quantified, and it is found that they are highly sensitive to the laser scanning speed of an SLM printer. The sensitivity of the peaks of the pressure and shear spectral waveforms acquired for the identical mPCA designs printed on the same build plate with the same process parameters is also quantified. For powder-based AM/3DP technologies, where scanning speed is among the crucial process parameters such as laser power and bed temperature, the reported correlations between scanning speeds and the mechanical and spectral features of the mPCAs are expected to be instrumental in developing in situ real-time monitoring systems.
KW - in situ real-time process monitoring
KW - laser scanning speed
KW - phononic crystal artifacts
KW - selective laser melting (SLM)
KW - stainless steel 316L
KW - ultrasonic process monitoring
UR - http://www.scopus.com/inward/record.url?scp=85159156289&partnerID=8YFLogxK
U2 - 10.1089/3dp.2022.0259
DO - 10.1089/3dp.2022.0259
M3 - Article
AN - SCOPUS:85159156289
SN - 2329-7662
VL - 11
SP - e1087-e1099
JO - 3D Printing and Additive Manufacturing
JF - 3D Printing and Additive Manufacturing
IS - 3
ER -