Abstract
<div class="line" id="line-5"> <span style='color: rgb(51, 51, 51); background-color: rgb(249, 249, 249); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> This article provides a stability analysis for the backward Euler schemes of time discretization applied to the spatially discrete spectral standard and nonlinear Galerkin approximations of the nonstationary Navier-Stokes equations with some appropriate assumption of the data (λ, </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> u </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 0.688em;'> 0 </span> <span style='color: rgb(51, 51, 51); background-color: rgb(249, 249, 249); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> , </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> f </i> <span style='color: rgb(51, 51, 51); background-color: rgb(249, 249, 249); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> ). If the backward Euler scheme with the semi-implicit nonlinear terms is used, the spectral standard and nonlinear Galerkin methods are uniform stable under the time step constraint Δ </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> t </i> <span style='color: rgb(51, 51, 51); background-color: rgb(249, 249, 249); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> ≤ (2/λλ </span> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 0.688em;'> 1 </span> <span style='color: rgb(51, 51, 51); background-color: rgb(249, 249, 249); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> ). Moreover, if the backward Euler scheme with the explicit nonlinear terms is used, the spectral standard and nonlinear Galerkin methods are uniform stable under the time step constraints Δ </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> t = O </i> <span style='color: rgb(51, 51, 51); background-color: rgb(249, 249, 249); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> (λ </span> <img src="http://binarystore.wiley.com/store/10.1002/num.20010/asset/equation/tex2gif-stack-1.gif?v=1&s=dccde75b2da2c525a7bb1ce132674dfd266decf3"/> <span style='color: rgb(51, 51, 51); background-color: rgb(249, 249, 249); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> ) and Δ </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> t = O </i> <span style='color: rgb(51, 51, 51); background-color: rgb(249, 249, 249); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> (λ </span> <img src="http://binarystore.wiley.com/store/10.1002/num.20010/asset/equation/tex2gif-stack-2.gif?v=1&s=8d43b497a2b7cf1ebff51149825e62cb8623b3fa"/> <span style='color: rgb(51, 51, 51); background-color: rgb(249, 249, 249); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> ), respectively, where λ </span> <img src="http://binarystore.wiley.com/store/10.1002/num.20010/asset/equation/tex2gif-stack-3.gif?v=1&s=29bf110be796dcadbe8870aa8561bfac1e79e07e"/> <span style='color: rgb(51, 51, 51); background-color: rgb(249, 249, 249); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> ≤ λ </span> <img src="http://binarystore.wiley.com/store/10.1002/num.20010/asset/equation/tex2gif-stack-4.gif?v=1&s=c100c03b8b805a1a17f3091530f43623cdd569d1"/> <span style='color: rgb(51, 51, 51); background-color: rgb(249, 249, 249); font-family: "Open Sans", Arial, Helvetica, "Lucida Sans Unicode", sans-serif; font-size: 16px;'> , which shows that the restriction on the time step of the spectral nonlinear Galerkin method is less than that of the spectral standard Galerkin method. </span></div>
Original language | American English |
---|---|
Journal | Numerical Methods for Partial Differential Equations |
Volume | 20 |
DOIs | |
State | Published - Sep 2004 |
Keywords
- Spectral Nonlinear Galerkin Methods
- Uniform Stability
DC Disciplines
- Mathematics