Abstract
The first investigation into the ultraviolet (UV) photoluminescence of gadolinium(III) in the presence of copper(II) is reported. A melt-quenched barium phosphate glass was used as a model matrix. The optical spectroscopy assessment shows that with increasing CuO concentration the Cu2+ absorption band grows steadily, whereas the UV emission from Gd3+ ions is progressively quenched. The data, thus, suggests the existence of a Gd3+→Cu2+ energy-transfer process ocurring through quantum cutting. A downconversion/cross-relaxation pathway proceeding through a virtual state in Gd3+ is proposed. These findings suggest gadolinium(III) could potentially be used in the optical sensing of copper(II).
Original language | American English |
---|---|
Journal | ChemPhysChem |
Volume | 16 |
DOIs | |
State | Published - Jun 8 2015 |
DC Disciplines
- Physical Sciences and Mathematics