Variations of radon and airborne particulate matter near three large phosphogypsum stacks in Florida

Caleb Adeoye, Jayanta Gupta, Nora Demers, Atin Adhikari

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Approximately 1 billion tons of phosphogypsum (PG), a by-product of the fertilizer industry, are currently stacked in Florida. PG emits radon gas, which is a risk factor for lung cancer and can also increase particulate matter (PM) associated non-cancer mortality in exposed individuals. We measured concentrations of atmospheric radon and particulate matter near PG stacks and their short-term variations at different distances to estimate exposures in nearby communities. Specifically, we measured atmospheric levels of radon, and mass concentrations of PM 1, PM 2.5, and PM 10, and number concentrations of PM 0.3, PM 0.5, PM 1, PM 2.5, PM 5, and PM 10 near three large PG stacks in Florida. Atmospheric radon was collected at distances of 2.5, 5.0, and 7.5 miles downwind from three large PG stacks using charcoal-based kits and measured by liquid scintillation counting. A professional radon monitor was used to take 24-h-average radon reading at 5.0 miles from each stack for comparison purposes. The median (IQR) radon levels were 0.325 (0.150, 0.675), 0.150 (0.150, 0.650), and 0.500 (0.150, 0.700) pCi/L at 2.5, 5, and 7.5 miles, respectively. The median (IQR) PM 2.5 levels were 5 (4, 6), 5 (3, 7), and 5 (2, 9) µg/m 3 at 2.5, 5, and 7.5 miles, respectively. Non-parametric Kruskal-Wallis test could not detect any association between radon or PM levels and distances (2.5–7 miles) from PG stacks. With scintillation counting, median radon levels detected were above the US Environmental Protection Agency (EPA) recommended standard in some of the sites; however, much higher levels were detected through the more advanced digital monitor. PM 2.5 levels were below the US-EPA 24-h average national ambient air quality standard in the study area. We conclude that ambient radon levels near PG stacks could exceed US EPA recommended outdoor standards and do not vary within a short distance from the sources, implying similar exposures in nearby communities.

Original languageAmerican English
Article number284
JournalEnviron Monit Assess
Volume193
Issue number5
DOIs
StatePublished - Apr 19 2021

Keywords

  • Air pollution
  • PM
  • Phosphogypsum stacks
  • Radon
  • Respiratory health

Fingerprint

Dive into the research topics of 'Variations of radon and airborne particulate matter near three large phosphogypsum stacks in Florida'. Together they form a unique fingerprint.

Cite this