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Abstract. The particle size distribution and powder morphology of metallic powders have 

an important effect on powder bed fusion based additive manufacturing processes, such as 

selective laser melting (SLM). The process development and parameter optimization 

require a fundamental understanding of the influence of powder on SLM. This study 

introduces a pre-alloyed titanium alloy Ti-6Al-4V powder, which has a certain amount of 

small particles, for SLM. The influence of small particle inclusion is investigated through 

microscopy of surface topography, elemental and microstructural analysis, and mechanical 

testing, compared to the Ti-6Al-4V powder provided by SLM machine vendor. It is found 

that the small particles inclusion in Ti-6Al-4V powder has a noticeable effect on extra laser 

energy absorption, which may develop imperfections and deteriorate the SLM fatigue 

performance. 

1. Introduction 

Powder-bed-fusion based Additive Manufacturing (AM) processes, such as selective laser melting 

(SLM), are increasingly employed for fabricating metal parts. In particular, the SLM titanium alloy parts 

(e.g. Ti-6Al-4V) are of great interest for aerospace, biomedical and industrial applications due to its 

geometry complexity, fracture resistance, fatigue behavior, corrosion resistance and biocompatibility 

[1]. A number of studies have been conducted to characterize the on the mechanical properties of SLM 

Ti-6Al-4V alloy. For example, Facchini et al. [2] and Ramosoeu et al. [3] characterized the 

microstructure and then tested tensile properties of SLM Ti-6Al-4V parts. Wycisk et al. [4] and Rafi et 

al. [5] carried out fatigue tests to evaluate the performance of as-built SLM Ti-6Al-4V parts under a high 

frequency periodical load cycles. Moreover, studies were also carried out on the applications of SLM 

Ti-6Al-4V parts in industry, aerospace, and medical implants. Caiazzo et al. [6] experimentally studies 

the use of SLM for manufacturing aircraft components. Cardaropoli et al. [7] discussed the feasibility of 

producing dental implants through SLM using Ti-6Al-4V pre-alloy powder.  

SLM process selectively melts metallic powder layer by layer based upon a sliced CAD file to build a 

part on a base plate. Inside the SLM building chamber, a recoating unit is used to feed new powder over 

http://creativecommons.org/licenses/by/3.0
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the build platform, as shown in figure 1. The widely usage of SLM parts attracts more metallic powder 

manufacturers to set foot into AM market. Many powder vendors provide metallic powders to SLM 

equipment users for research and process development. Whether a powder is applicable for SLM 

process to produce comparable parts is uncertain to the SLM user community. In order to clarify these 

uncertainties, this study attempts to employ a new Ti-6Al-4V powder (AP&C Inc, Canada) into a 

commercialized SLM equipment (EOS M270). The powder morphology and particle size distribution 

were analyzed and compared to a mature Ti-6Al-4V powder (machine vendor provided). Experiments 

were carried out to develop the optimum process parameters for fully dense parts. Metallography and 

elemental composition of as-built part was studied. Tensile and fatigue tests were also conducted.  

 

Figure 1. Schematic of SLM Process  

2. Powder Characterization 

Figure 2(a) shows the scanning electron microscopy (SEM) of AP&C Ti-6Al-4V powder morphology. 

It is noted that the AP&C powder particles have the similar spherical shape, compared to the EOS 

provided Ti-6Al-4V powder (figure 2(b)). A certain amount of fine particles are observable. This is 

confirmed by the particle size analysis (PSA) using a Microtrac S3000 particle analyzer, as shown in 

figure 3. The PSA of AP&C powder indicates a size distribution between 17.36 µm (D10) and 44.31 µm 

(D90) with Mean Volume (MV) diameter around 30 µm.  

 

Figure 2. SEM of (a) AP&C Ti-6Al-4V Powder and (b) EOS Ti-6Al-4V Powder. 
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Figure 3. Particle Size Distribution of (a) AP&C Ti-6Al-4V and (b) EOS Provided Ti-6Al-4V Powder 

3. Preliminary Test 

AP&C Ti-6Al-4V powder was directly loaded into an EOS M270 for a preliminary test, in order to 

verify the powder adaptability. The machine has a fiber laser (max 200 W). Galvo mirrors and flat field 

lens are used to conduct laser beam and maintain a constant focal spot size (~100 µm), with scan speed 

up to 7000 mm/s. Following a standard operation procedure, AP&C powder was melted using the 

factory default process parameters to fabricate trial parts. After completion, a measurement showed that 

trail parts have a comparable density to the part fabricated by EOS powder. For further evaluation, 

microscopy was used to observe the top surface of trial part. As shown in figure 4(a), scan tracks are 

incoherent on the top surface, deducing voids with small entrapped powder particles inside. So the rough 

surface for every layer may be expected. The voids could be filled by recoating powder of following 

layers and melted to minimize porosity inclusion. But there is no apparent evidence that voids could be 

completely eliminated. A consistent surface topography is desired for using the AP&C powder in SLM 

process. Thus, development of optimum process parameters for AP&C Ti64 powder is required. 

      

Figure 4. Top surface topography of (a) AP&C Ti-6Al-4V sample and (b) EOS Ti-6Al-4V sample. 

4. Experiment Methods 

A factorial design of experiment (DOE) is conducted for investigating the optimum parameters of 

AP&C powder in the EOS M270 machine to make fully dense parts. The laser power and scan speed 

have a critical impact on the energy density [8]. Thus, these two parameters were varied, as shown in 

Table 1, with constant hatch spacing (100 µm) and layer thickness (30 µm).  

Table 1. Factors and levels of factorial DOE of AP&C Ti-6Al-4V Powder. 

Factor Level 

Laser Power (W) 40, 80, 120, 160 

Scan Speed (mm/s) 120, 240, 360, …, 1560 

(a) AP&C Ti-6Al-4V PSA (b) EOS Ti-6Al-4V PSA 

Small particles inclusion 

(a) AP&C Ti-6Al-4V  (b) EOS Ti-6Al-4V 

 
200 μm 

 
200 μm 
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After samples were fabricated, each specimen’s density was measured using the Archimedes method 

(ASTM B962-08) [9] to estimate porosity and determine optimum parameters. As-built parts were 

sectioned, abrasively grinded and polished, and etched for metallography. It is found that the laser 

power 120 W and scan speed 960 mm/s are eligible to produce fully dense parts, in conjunction with 

other default process parameters. Cylindrical bars were built in the Z orientation (ISO/ASTM 52921, 

2013) using this optimum parameter set, and then machined to specimens conforming to ASTM E8 for 

tensile testing and ASTM E466 for fatigue testing. Tensile tests were carried out using an Instron 5569A 

tensile testing machine. High cycle fatigue tests were performed on a 10kN Instron Electropulse 10000 

fatigue testing machine. Sinusoidal load was applied to fatigue specimens axially (50 Hz, stress ratio 

R=0.1). Fatigue testing was stopped when the specimens broke or the fatigue cycles reached 10
7
 cycles. 

Fracture surface was examined by a FEI Nova NanoSEM 600 SEM. 

5. Results and Discussion  

5.1 Microstructural Analysis 

Microstructural evolution is primarily a function of cooling rate. The SLM process undergoes a very 

high cooling rate which results in a lenticular martensitic (α΄) microstructure of Ti-6Al-4V, as shown in 

figure 5. The martensitic phase of AP&C Ti-6Al-4V sample shows similar microscopic morphology in 

comparison with EOS Ti-6Al-4V sample. Martensitic laths originated from the prior β grain boundaries. 

All β phases (BCC) are transformed to hexagonal martensite. The microstructure indicates that the small 

particles inclusion does not influence the formation of crystalline structures in the SLM process. 

 

Figure 5. Optical microscopy of microstructure of SLM samples 

5.2 Composition Analysis 

The chemical composition of SLM samples was analyzed using energy dispersive X-ray analysis 

(EDAX). The EDAX is a commonly used analytical technique for the elemental analysis, which allows 

a unique set of peaks on its electromagnetic emission spectrum for each element. The EDAX spectrum 

of AP&C sample and EOS sample are shown in figure 6.  

   

Figure 6. EDAX spectrum of (a) AP&C Ti-6Al-4V sample and (b) EOS Ti-6Al-4V sample. 

(a) AP&C Ti-6Al-4V 

Ti - 88.93 wt% 

Al - 6.47 wt% 

V - 4.59 wt% 

(b) EOS Ti-6Al-4V 

Ti - 89.78 wt% 

Al - 6.46 wt% 

V - 3.76 wt% 
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There is no apparent difference in the composition between Ti-6Al-4V samples. The chemical 

composition is primarily determined by the composition of pre-alloyed Ti-6Al-4V powder. The melting 

and solidification process of SLM have few influence on the elemental composition. The variation of 

particle size distribution could have an impact on the mass transportation during the laser melting 

process. The small particles may be more easily ejected owing to the recoil force of metallic vapor. But 

the chemical composition of Ti-6Al-4V sample is not influenced. 

5.3 Tensile Property 

Six duplicate specimens were performed for the tensile test. Corresponding tensile stress-strain curves 

were obtained directly from the Instron system, as shown in figure 7. Tensile properties are summarized 

in Table 2, in comparison with EOS Ti-6Al-4V. Generally, the material properties of AP&C specimens 

and EOS specimens are comparable. Both SLM Ti-6Al-4V materials show a higher yield strength and 

tensile strength compared to the wrought Ti-6Al-4V samples, due to the observed martensitic 

microstructure. The martensite grains nucleate and grow at a rapid rate, resulting in a very small grain 

size (a greater total grain boundary area). The grain boundaries impede the slip process and increase the 

strength of the material. No significant influence of small particles inclusion is observed on the tensile 

property.  

Table 2. Tensile Properties of SLM Ti-6Al-4V samples. 

 SLM AP&C 

Ti-6Al-4V 

SLM EOS 

Ti-6Al-4V
a
   

Yield Strength (MPa) 1098 ± 45 1150 ± 80 

UTS (MPa) 1237 ± 39 1290 ± 80 

Strain at Break (%) 8.8 ± 1.8 8 ± 4 

Young’s Modulus (GPa) 109 ± 6.3 110 ± 5 

 

 

5.4 Fatigue Performance 

As for the high-cycle fatigue test, materials performance is shown in figure 8(a), comparing AP&C and 

EOS specimens. It is noted that the AP&C specimens show considerable scatter in fatigue life. The 

fatigue limit is also lower than the EOS specimens, which was reported by Rafi et al [5]. The AP&C 

specimens appear to have an inferior fatigue behavior, as opposed to the tensile properties. Although it is 

hard to assert that the inclusion of small particles deteriorate the fatigue performance, the variation of 

powder and process parameters undoubtedly have an influence on the Ti-6Al-4V parts. The small 

particles inclusion may play a critical role during the SLM process. Due to the small particles inclusion, 

the absorption is greatly increased on powder content resulted by the multiple scattering of laser [10]. A 

higher temperature and larger melt pool size can be expected. The drastic phase transformation may 

cause an unsteady melt pool and scan tracks. Keyhole defects, volumetric voids, and impurities have a 

great potential to be included in the SLM specimens. The fatigue behavior is sensitive to these 

imperfections, especially when a high frequency cyclic load is applied. The fractography in figure 8(b) 

shows the crack initiation site on the fracture surface of an AP&C fatigue specimen. It can be clearly 

seen that small particles are entrapped in a defective site, which cause stress concentration. 
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Figure 8. SLM Ti-6Al-4V fatigue specimens (a) S-N curve and (b) fractography. 

6. Conclusion 

This study introduces a new Ti-6Al-4V powder for SLM process. The influence of small particles 

inclusion is investigated. It is found that process parameters need to be tuned for fabricating fully dense 

parts if using new powder. The small particle inclusion does not influence the microstructure and 

elemental composition of SLM Ti-6Al-4V parts. The tensile property of AP&C Ti-6Al-4V specimens is 

also comparable to the specimen fabricated by EOS powder. However, the fatigue performance of 

AP&C specimens is poor. The small particles inclusion may influence the laser absorption on the 

powder bed, resulting in imperfections in the SLM material. Thus, future research is highly desired to 

conduct quantative analysis of small particles in the powder system. 
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