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H. Wang

in terms of the degrees of adjacent vertices have been studied extensively. The goal of this note is to provide a general
characterization for the extremal structures with respect to such indices defined for a particular type of functions.
In this note we restrict our attention to trees with given degree sequence (the nonincreasing sequence of internal vertex
degrees). For such a tree T , the most well known such index is probably the Randić index [7]

R(T ) = ∑
uv∈E(T )

(deg(u)deg(v))− 12 .

This concept can be naturally generalized to

wα (T ) = ∑
uv∈E(T )

(deg(u)deg(v))α

for α 6= 0, also known as the connectivity index (see for example [3]). When α = 1, this is also called the weight of a
tree. In fact, Randić also proposed wα (T ) for α = −1, later rediscovered and known as the Modified Zagreb index. The
extremal trees (for these indices) for trees in general [6], trees with restricted degrees [8] and trees with given degree
sequence [3, 10] have been characterized over the years.
A natural variation of R(T ) was named the sum-connectivity index [16]

χ(T ) = ∑
uv∈E(T )

(deg(u) + deg(v))− 12

and the general sum-connectivity index [17]

χα (T ) = ∑
uv∈E(T )

(deg(u) + deg(v))α .

Many interesting mathematical properties of these two indices, including some extremal results, can be found in [16, 17].
Another variant of R(T ) is the harmonic index [4]

H(T ) = ∑
uv∈E(T )

2
deg(u) + deg(v) ,

which takes the sum of the reciprocal of the arithmetic mean (as opposed to the geometric mean in the case of R(T ))
of adjacent vertex degrees. The extremal trees among simple connected graphs and general trees were characterized
in [15].
A fundamental question in the study of such invariants asks for the extremal structures under certain constraints that
maximize or minimize a topological index. As mentioned above, some of such extremal structures have been characterized
regarding the aforementioned indices. In this note, we point out that these indices can be described in a general way
and the corresponding extremal structures can be characterized through a unified approach.
This is achieved by generalizing the approaches taken on previous related questions and considering a symmetric
bivariate function f(x, y) (defined on N× N) such that

f(x, a) + f(y, b) ≥ f(y, a) + f(x, b) for any x ≥ y and a ≥ b. (1)

Furthermore, strict inequality is implied if both conditions are strict. For a tree T , let the connectivity function associated
with f be

Rf (T ) = ∑
uv∈E(T )

f(deg(u), deg(v)). (2)
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Functions on adjacent vertex degrees of trees with given degree sequence

Noting that (1) is essentially a discrete version of

∂2
∂x∂yf(x, y) ≥ 0,

it is not difficult to see that with different f , Rf (T ) describes H(T ), wα (T ) for any α , and χα (T ) for α > 1 or α < 0. For
0 < α < 1, χα (T ) can be discussed in a similar way as in the rest of this note, only with reversed extremal structures
(i.e., the extremal tree maximizing χα (T ) for α > 1 or α < 0 is a minimizing tree for χα (T ) for 0 < α < 1 and vice
versa). We will show the following, that among trees of given degree sequence, Rf (T ) is maximized by the greedy trees
(Definition 2.1) in Section 2 and minimized by the alternating greedy trees (Definition 3.1) in Section 3.

Theorem 1.1.
For any function f satisfying (1) and Rf (T ) defined as in (2), Rf (T ) is maximized by the greedy tree and minimized by
an alternating greedy tree among trees with given degree sequence.

2. Greedy trees

Greedy trees have been shown to be extremal with respect to many other graph invariants among trees of a given
degree sequence (see, for instance, [9, 11, 13, 14]). With respect to invariants based on adjacent degrees, some extremal
structures were obtained before but surprisingly not all.

Definition 2.1 (Greedy trees).
With given vertex degrees, the greedy tree is achieved through the following “greedy algorithm”:

(i) Label the vertex with the largest degree as v (the root);
(ii) Label the neighbors of v as v1, v2, . . ., assign the largest degrees available to them such that deg(v1) ≥ deg(v2) ≥ · · · ;
(iii) Label the neighbors of v1 (except v) as v11, v12, . . . such that they take all the largest degrees available and that

deg(v11) ≥ deg(v12) ≥ · · · , then do the same for v2, v3, . . .;
(iv) Repeat (iii) for all the newly labeled vertices, always start with the neighbors of the labeled vertex with largest

degree whose neighbors are not labeled yet.

For example, Figure 1 shows a greedy tree with degree sequence (4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2).
v

v1 v2 v3 v4

v11 v12 v13 v21 v22 v23 v31 v32 v41 v42

Figure 1. A greedy tree

Particularly interesting to our study, the weight w1(T ) has been shown to be maximized by the greedy tree [3] and it was
pointed out that the technique there can be easily modified to show that R(T ) or wα (T ) for negative α are maximized
by the greedy trees among trees with a given degree sequence [10].
We provide a brief proof for the extremality of the greedy tree with respect to general Rf (T ). For this purpose we
consider a longest path in the extremal tree T , labeled as P(v0, vt+1) = v0v1 . . . vtvt+1 with v0 and vt+1 being leaves. Let
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Ti (i = 1, . . . , t) denote the connected components containing vi in T − E(P(v0, vt+1)). Note that the order of T ′i s does
not affect the contribution of any edge (to Rf (T )) not on P(v0, vt+1). The following statement and its proof are rather
similar to those in [11], we provide a slightly simplified argument.

Lemma 2.2.
For a tree with given degree sequence that maximizes Rf (T ) and s ≤ (t + 1)/2, there is an extremal tree that satisfies

deg(vs) ≤ deg(vt+1−s) ≤ deg(vk ) for s ≤ k ≤ t + 1− s. (3)
Proof. Let vk be the vertex with the largest degree on this path, without loss of generality, one can assume that

deg(vk−1) ≤ deg(vk+1) ≤ deg(vk ).
First note that the establishment of

deg(vk−i) ≤ deg(vk+i)
and

deg(vk+i) ≥ deg(vk+i+1)
will imply (3) and automatically place vk as the middle vertex of the path P(v0, vt+1). Suppose (for contradiction) that
(3) does not hold.
(1) Let i be the smallest value such that

deg(vk−i) ≤ deg(vk+i)
does not hold. Then we have

deg(vk−i) > deg(vk+i) and deg(vk−i+1) ≤ deg(vk+i−1).
Consider the tree

T ′ = T − {vk−ivk−i+1} − {vk+ivk+i−1}+ {vk+ivk−i+1}+ {vk−ivk+i−1}
as in Figure 2. From T to T ′, the value of f(., .) stay the same for all other pairs of adjacent vertex degrees except for
the pairs {vk−i, vk−i+1}, {vk+i, vk+i−1} in T and {vk+i, vk−i+1}, {vk−i, vk+i−1} in T ′. By the definition of f(., .), we have

f(deg(vk−i+1), deg(vk+i)) + f(deg(vk+i−1), deg(vk−i))
≥f(deg(vk−i+1), deg(vk−i)) + f(deg(vk+i−1), deg(vk+i))

and consequently
Rf (T ′) ≥ Rf (T ).

vk vk+ivk−i. . . . . .

Figure 2. Case (1)

(2) Without loss of generality, let i be the smallest value such that
deg(vk+i) ≥ deg(vk+i+1)

does not hold. Note that i ≥ 1.
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(a) If deg(vk+i+2) < deg(vk+i+1), consider the tree

T ′ = T − {vk+ivk+i−1} − {vk+i+2vk+i+1}+ {vk+ivk+i+2}+ {vk+i−1vk+i+1}

as in Figure 3. Same argument as Case (1) shows that

Rf (T ′) > Rf (T ).

vk vk+i vk+i+1. . . . . .

Figure 3. Case (2-a)

vk vk+i vk+i+j. . .

Figure 4. Case (2-b)

(b) More generally, if deg(vk+i+2) ≥ deg(vk+i+1), let j be the largest value such that deg(vk+i+j ) ≥ deg(vk+i+j−1) (note
that, since vt+1 is a leaf, we must have deg(vt+1) < deg(vt)). Then consider the tree

T ′ = T − {vk+ivk+i−1} − {vk+i+jvk+i+j+1}+ {vk+ivk+i+j+1}+ {vk+i−1vk+i+j}

as in Figure 4 and we have
Rf (T ′) ≥ Rf (T ).

Remark 2.3.
We did not need the strictness of inequalities as we only intend to show the extremality (but not unique extremality) of
the greedy trees.

As established in the study of greedy trees for other graph invariants (see for instance [11]), Lemma 2.2 implies the
extremality of the greedy tree among trees with given degree sequence.

3. Alternating greedy trees

Being much less known, the alternating greedy tree has only appeared (to our best knowledge) in the study of the
Randić index [10] and was not formally defined. We repeat the definition here in the form of the algorithm to construct
such a tree.

Definition 3.1 (Alternating greedy trees).
Given the nonincreasing degree sequence (d1, d2, . . . , dm) of internal vertices, the alternating greedy tree is constructed
through the following recursive algorithm:
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(i) If m−1 ≤ dm, then the alternating greedy tree is simply obtained by a tree rooted at r with dm children, dm−m+1
of which are leaves and the rest with degrees d1, . . . , dm−1;

(ii) Otherwise, m− 1 ≥ dm + 1. We produce a subtree T1 rooted at r with dm − 1 children with degrees d1, . . . , ddm−1 ;
(iii) Consider the alternating greedy tree S with degree sequence (ddm , . . . , dm−1), let v be a leaf with the smallest

neighbor degree. Identify the root of T1 with v .

As an example (Figures 5, 6, 7), for the given degree sequence (8, 7, 6, 6, 5, 5, 3, 3, 3, 2) :
• T1 is constructed with degrees {8, 2} (as in (ii)), leaving the degree sequence (7, 6, 6, 5, 5, 3, 3, 3) (as in (iii)) with

the corresponding alternating greedy tree S1;
• To construct S1, T2 is formed with degrees {7, 6, 3}, leaving the degree sequence (6, 5, 5, 3, 3) with the correspond-

ing alternating greedy tree S2;
• To construct S2, T3 is formed with degrees {6, 5, 3}, leaving the degree sequence (5, 3) to provide us the trivial S3

(as in (i));
• Attaching T3 to S3 (i.e., identifying the root of T3 with a leaf of S3 whose neighbor has the smallest degree in S3,

as in (iii)) yields S2;
• Then attaching T2 to S2 (i.e., identifying the root of T2 with a leaf of S2 whose neighbor has the smallest degree

in S2) yields S1;
• In the final step, it is obvious that the two choices (two leaves of S1 with the same neighbor degree) for attaching
T1 to S1 yield two different such alternating greedy trees. Consequently, unlike the greedy trees, alternating
greedy trees are not necessarily unique.

T1 T2 T3 S3

Figure 5. Construction of T1, T2, T3, and S3

Figure 6. The alternating greedy tree S1 from T2, T3 and S3

Figure 7. The alternating greedy trees T or T ′ from T1 and S1

To see that the alternating greedy trees minimize Rf (T ) among trees with given degree sequence, we again consider a
longest path P(v0, vt+1) = v0v1 . . . vtvt+1 in an extremal tree and claim the following.
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Lemma 3.2.
For the trees with given degree sequence that minimize Rf (T ) and i ≤ (t + 1)/2, there exists one such tree where

deg(vi) ≤ deg(vt+1−i) ≤ deg(vk ) for i ≤ k ≤ t + 1− i

if i is even; and
deg(vi) ≥ deg(vt+1−i) ≥ deg(vk ) for i ≤ k ≤ t + 1− i

if i is odd.

The proof follows from the same logic as that in [10] and details are similar to that of Lemma 2.2. We leave the proof
out to keep this note short. It is not difficult to see that Lemma 3.2 implies the extremality of alternating greedy trees
(not necessarily unique) [10].

4. Concluding remarks

We show the extremality of the greedy trees and alternating greedy trees with respect to the connectivity function
Rf (T ) among trees with given degree sequence. This simple generalization, proved through similar techniques as before,
answers the extremal questions with respect to a number of graph invariants. An interesting fact is that as long as the
condition (1) is preserved, Rf is maximized by the greedy tree and minimized by the alternating greedy tree regardless
of whether f is increasing or decreasing with respect to each variable.
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