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ABSTRACT

Small animals typically rely on quick bursts and intermittent
pauses when moving in the wild. Hence, the study of accel-
eration capacity is important for understanding the ecology
and evolution of locomotor performance. In this study, we
investigate intraspecific variation in the acceleration capacity
of a small lizard (Sceloporus woodi). To quantify animal accel-
eration performance, the momentum-impulse theorem is ap-
plied to data collected from high-speed video recordings of
individuals accelerating from a standstill and over a subsequent
distance of 0.4 m. Unlike earlier studies, the momentum-
impulse approach allows one to directly and precisely quantify
the per step contribution to acceleration capacity. Like other
small vertebrates, we show that S. woodi is capable of accel-
erating to near maximum speeds (∼2 m s�1) within ∼0.4 m
and needs only a few steps (at least five) to achieve maximum
speed. However, considerable intraspecific variation in accel-
eration capacity exists; individuals take different numbers of
steps (two to five steps) over the first 0.4 m, and only some
individuals (10 of 19) reach their maximum speed over the
first 0.4 m. Only acceleration performance in steps 1 and 2 is
predictive of running speed at 0.4 m; accelerations in steps 3,
4, and 5 are not related to individual differences in speed.
Individual variation in acceleration strategy is considerable,
with individuals using one of three strategies to reach maximum
speed. Muscle mass-specific power during acceleration ap-
proaches the maximum power output measured for lizard
hindlimb musculature (∼900 W kg�1), suggesting that S. woodi
accelerations approach the limit of their musculoskeletal sys-
tem. This study highlights the utility of the momentum-impulse
approach to study acceleration performance and the impor-
tance of elucidating the per step contribution to acceleration
capacity.

Introduction

Animals use locomotion in a variety of ecologically relevant
contexts, such as predator evasion, prey pursuit, and territorial
defense (Swingland and Greenwood 1983). As such, how well
an individual can perform within these contexts is predicted
to affect survival and reproduction (Garland and Losos 1994;
Irschick and Garland 2001). Studies have shown that both nat-
ural and sexual selection can act on maximum locomotor per-
formance (reviewed in Irschick et al. 2008) and that locomotor
performance has undergone evolutionary adaptation to the
structural environment (e.g., Anolis; Losos 1990) and has
evolved with foraging behavior (Garland 1999; Miles et al.
2007). Clearly, the study of locomotor performance is impor-
tant for broadening our understanding of organismal ecology
and evolution.

Historically, studies of locomotor performance focused on
steady-speed, maximal performance (i.e., sprint speed and en-
durance capacity). This large body of work greatly enhanced
our understanding of how locomotion is related to organismal
ecology and evolution. Unfortunately, few of these studies pro-
vide insight into how animals actually move in the wild or
attain high speeds. Most small animals move intermittently
using quick bursts and pauses (Irschick 2000; Mattingly and
Jayne 2005; McElroy et al. 2007) such that the ability to escape
a predator or defend a territory is more likely dependent on
explosive acceleration to fast speeds than it is on absolute max-
imum sprint speed (Huey and Hertz 1984; Webb 1986; Miles
2004; Vanhooydonck et al. 2006a, 2006b). Thus, an under-
standing of acceleration capacity as animals move from a stand-
still to maximum speed is required if we are to more completely
understand the relevance of locomotor performance to animals
in nature.

The study of acceleration capacity is gaining momentum.
Over the past several years, new studies have emerged showing
accelerations’ morphological correlates (Vanhooydonck et al.
2006b), biomechanical underpinnings (Biewener and Blickhan
1988; Irschick and Jayne 1998; Roberts and Scales 2002; Aerts
et al. 2003; Roberts and Marsh 2003; McGowan et al. 2005;
Scales and Butler 2007; Clemente et al. 2008; Williams et al.
2009), muscle physiological predictors (Wilson et al. 2000; Cur-
tin et al. 2005), and ecological relevance (Vanhooydonck et al.
2006a, 2006b; Schuett et al. 2009). These studies have clearly
demonstrated that acceleration capacity is an important facet
of overall locomotor performance. One commonality of these
investigations is that acceleration decays exponentially with step
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644 E. J. McElroy and L. D. McBrayer

number (Huey and Hertz 1984; Irschick and Jayne 1998), which
suggests that acceleration in the first couple of steps is the most
important for achieving large speeds. However, each of these
earlier studies uses peak acceleration per step (defined as the
maximum value of the acceleration-time curve for a whole
animal bursting from a standstill) or “average” acceleration over
short intervals (Huey and Hertz 1984; Irschick and Jayne 1998).

By studying only peak acceleration or average acceleration,
previous studies have conveyed only a partial understanding of
how acceleration affects running speed. Acceleration is defined
as the increase in speed over time. When animals accelerate
from a standstill, they use successive steps to generate the ac-
celerative force necessary to increase the speed of the whole
animal. We define acceleration performance as the total increase
in speed over time (where time could be a step or stride); thus,
maximum acceleration performance is the maximum increase
in speed an animal can achieve over a given time. Defined this
way, acceleration performance can be quantified using the
momentum-impulse theorem such that the integral of the
acceleration-time curve associated with each step is equivalent
to the change in velocity of that step. The utility of using this
approach is that one can account for the total effect that ac-
celeration has on increasing speed; this cannot be achieved by
quantifying only peak acceleration (a single value along this
curve) or average accelerations (the mean value of this curve).
Using this viewpoint, one can show that animals can achieve
greater acceleration in two ways. First, an animal could lengthen
the time component of the integral by increasing ground con-
tact time (Tc) to increase impulse (Williams et al. 2009). Second,
an animal could increase peak acceleration while keeping Tc

very small (Vanhooydonck et al. 2006a; Williams et al. 2009).
Each of these strategies appears to have a biological limit. Con-
tact time cannot be too long because it will ultimately slow the
entire burst locomotor event. While contact time cannot be
too long, neither can peak acceleration be too large because it
may exceed the ability of bone to withstand high peak stress
(Biewener 2003) and/or the ability of muscle to generate short,
high-power contractions (Swoap et al. 1993). Unfortunately,
the relative contribution of these two strategies to burst lo-
comotion remains relatively unexplored.

In this study, we demonstrate that by using the momentum-
impulse approach one can quantify acceleration performance
as the per step change in velocity associated with the integral
of the acceleration-time curve (acceleration performance).
Studying acceleration on a per step basis using the momentum-
impulse approach is advantageous because it allows one to
unequivocally identify which steps result in the greatest increase
in speed. This is important because animals are hypothesized
to reach maximum speed either by taking very few large ac-
celerative steps or by taking many smaller accelerative steps
(Hildebrand 1985; Irschick and Jayne 1998). By identifying
which steps are crucial for increasing speed, one can then ex-
amine how Tc and peak acceleration contribute to acceleration
performance and thus gain a better understanding of the bi-
ological limits of animal acceleration.

We first discuss the momentum-impulse approach and how

it can be used to quantify per step acceleration performance
capacity. Next, we provide data on intraspecific variation in
acceleration performance in the lizard Sceloporus woodi. Ani-
mals used successive steps to accelerate from a standstill
through 0.4 m; therefore, we were particularly interested in
uncovering the relative contribution of successive accelerative
steps to whole-animal speed at 0.4 m away from its starting
position. We expected individuals with greater speeds to have
greater per step acceleration performance and to take more
steps over the first 0.4 m. In addition, we expected that high
acceleration performance in the first few steps would be the
most important for generating the highest speeds. Next, we
explore the relative contribution of peak acceleration and con-
tact time to altering per step acceleration performance for the
first two steps of burst locomotion. Finally, we quantify whole-
animal power over the 0.4-m locomotor burst and compare
how individuals differ in power output. The examination of
whole-animal mechanical power is highly relevant to studies
of speed and acceleration since, by definition, power is the
product of speed and acceleration and is well known to have
biological limitations (Curtin et al. 2005; Scales and Butler
2007).

Methods

Biomechanical Analysis

The goal of our analysis was to estimate the contribution of
successive accelerating steps to achieving maximum speed. To
accomplish this goal, we employed a momentum-impulse ap-
proach to study acceleration capacity. This approach states that
a change in a body’s linear momentum must be achieved via
the application of an impulsive force and is represented by the
following equation:

D momentum p force dt. (1)�
Thus, the time integral of a ground reaction force must equal
the change in momentum of the animal’s center-of-mass. Ex-
pansion of the terms in equation (1) yields equation (2), which
simplifies to equation (3) because whole-animal acceleration is
being considered:

D mass # velocity p mass # acceleration dt, (2)�
D velocity p acceleration dt. (3)�

Equation (3) shows that any change in the center of mass
velocity is equivalent to the time integral of the acceleration
profile that caused that change in velocity. Studying an animal
accelerating from a standstill ( ) to its maximumvelocity p 0
speed reduces the left side of equation (3) to maximum speed.
The accelerations involved to achieve this maximum speed are
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Acceleration Performance in Sceloporus woodi 645

the integral of the acceleration-time curve, which results from
craniocaudal ground reaction forces produced by successive
steps. Thus for our study, the momentum-impulse principle
can be written as follows:

Maximum velocity p

acceleration 1 dt � acceleration 2 dt … acceleration k dt,� � �
(4)

where k is the step in which maximum velocity is achieved.
This simple mathematical approach allows one to determine
the relative contribution of each step’s acceleration perfor-
mance to achieving maximum speed. In addition, this approach
allows one to calculate the per step change in velocity via dig-
itized high-speed video or normalized craniocaudal ground re-
action forces.

A custom LABVIEW VI was written to graphically display
the acceleration profile and automatically calculate the accel-
erative integral for each step. The position of touchdown for
each step on the acceleration profile was manually selected
using footfalls quantified from high-speed video. We chose to
calculate the accelerative integral for each step from the time
a hindfoot contacted the substrate until the next opposite-side
hindfoot contacted the substrate. Thus, the total amount of
acceleration was calculated for each full step (contact time and
aerial phase). For simplicity, we refer to the per step accelerative
integral as acceleration performance.

Animals

We captured 19 adult male Sceloporus woodi from the Ocala
National Forest in central Florida during April and June 2009.
Animals were housed individually in 10-gallon aquaria with a
loose sandy substrate; they were fed vitamin-dusted crickets
three times weekly and misted with water daily. We used only
healthy individuals for experiments.

Before all experiments, nontoxic white correction fluid was
used to paint a small dot at the base of the occiput on the
dorsum of each lizard. This marker was then digitized, and its
position, velocity, acceleration, and power were estimated for
each video frame of each trial.

Animals were placed in an incubator set at 35�C for 1 h
before each trial and in between trials on the same day.

At the end of the locomotor study, 13 individuals were re-
leased at their point of capture. The other six were killed. Cap-
tive care and euthanasia procedures followed approved Insti-
tutional Animal Care and Use Committee protocols (College
of Charleston: 2009-009; Georgia Southern University: I08009).

Locomotion Trials

Lizards ran down a flat racetrack toward a dark hide box. The
racetrack was 3 m long and 0.35 m wide with wooden sidewalls
0.4 m tall. The surface of the track was covered with cork bark,

which provided excellent traction with minimal slippage as
observed during video review. A Casio EXILIM EX-F1 camera
(resolution ) was suspended and collected video of512 # 384
the lizard’s dorsum over the first 0.4 m of the racetrack. This
distance seemed appropriate for achieving near maximal sprint-
ing speed on the basis of distances reported in previous studies
(∼30 cm; Huey and Hertz 1984; Curtin et al. 2005). Video was
collected at 300 frames per second, as suggested by Walker
(1998) and following previous studies (Bergman and Irschick
2006; Vanhooydonck et al. 2006a, 2006b).

Lizards were positioned in a resting, motionless posture at
the beginning of the racetrack with the entire body in the
camera’s field of view. Hand clapping or a tail pinch induced
a rapid locomotor burst from this resting posture. Lizards were
encouraged to move down the length of the entire racetrack
by continued clapping. We classified trials as good or bad. Good
trials were those in which the lizard ran in a straight line down
the entire length of the racetrack, with no or very few pauses.
Bad trials were those in which the lizard turned, attempted to
climb the sidewall, or refused to run the entire length of the
track. Only good trials were used in subsequent analyses. Each
individual was run four to 10 times down the raceway. For
further analysis, we used only the best trial from each individ-
ual, which was defined as either (1) the only trial in which that
individual met our criteria for good or (2) the trial with the
highest instantaneous speed while under the camera (i.e., the
first 0.4 m of the 3-m racetrack).

The racetrack was equipped with Keyence fiber-optic sensors
(FS-V32) placed at 0.25-m intervals along its length. Analysis
of the speed data obtained from photocells showed that lizards
increased their speed by a maximum of 1.61 m s�1 (range p
1.46–1.73 m s�1) over any pair of photocells (e.g., between 1
and 2; 0.25 m) and 1.85 m s�1 (1.65–2.14 m s�1) over every
other pair of photocells (e.g., between photocells 1 and 3; 0.5
m). In addition, for the trials included in our subsequent anal-
yses, individuals obtained maximum running speed over the
following pairs of photocells: pair 1, ; pair 2, ; pairn p 7 n p 3
3, ; pair 4, ; pair 5, ; pair 6, ; pair 7,n p 1 n p 3 n p 2 n p 2

. These data show that S. woodi is capable of accelerationn p 1
to near maximum sprinting speed over a distance of ∼0.4 m,
justifying our choice of this distance for studying acceleration
performance.

Video Analysis

We imported video to a PC and manually trimmed the video
files using Adobe Premiere Elements computer software. In-
dividual trials were trimmed to 10 frames before the lizard
began moving until the lizard had run completely out of camera
view down the racetrack. This consisted of 0.4 m of burst
locomotion.

Video from the dorsal view was used to estimate the animal’s
position for each frame. We used the program DIDGE (A. J.
Cullum, 1999) to manually digitize a marker at the base of the
occiput to obtain position. Next, we used the program GCVSPL
(Woltring 1986) to fit a quintic spline to the position data and
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646 E. J. McElroy and L. D. McBrayer

Figure 1. Bar diagrams for individual Sceloporus woodi (identifications
along the vertical axis) showing per step peak acceleration and accel-
eration performance.

to calculate the first (velocity) and second (acceleration) de-
rivatives from the spline coefficients fitted to the position data.
We manually chose the spline cutoff frequency (usually ∼25
hz) for each trial, such that it eliminated secondary oscillations
in the acceleration data (Aerts 1998). The output from this
procedure was the instantaneous velocity and acceleration for
each frame of each video. We multiplied instantaneous velocity
by instantaneous acceleration and individual body mass to es-
timate instantaneous whole-animal power. Position, velocity,
acceleration, and power profiles were imported into a custom
Labview VI for further analysis.

The customized Labview VI allowed us to manually position
footfall data on the acceleration and power curves for the du-
ration of each locomotor bout. Footfalls (touchdown and liftoff
of each hindfoot) were recorded by reviewing the video. Con-
tact time was then calculated by subtracting the time of touch-
down from the time of liftoff. After positioning, the VI auto-
matically calculated the peak acceleration and peak power
associated with each step. As mentioned above, the VI also
calculated the numerical integral of the acceleration-time curve
per step to estimate acceleration performance. One issue with
this approach is that we took the derivative of the velocity-time
curve to calculate acceleration and then took the integral of
the acceleration-time curve to calculate acceleration perfor-
mance. This method was chosen because it allowed us to es-
timate the total amount of accelerative effort (acceleration per-
formance) with each step. Finally, the VI automatically found
the maximum instantaneous speed and its time for each trial.

We present whole-animal power calculations in three ways
in order to compare our results with previous investigations:
raw whole-animal power, mass-specific whole-animal power,
and muscle mass–specific whole-animal power. Mass-specific
animal power was calculated by dividing instantaneous power
by individual body mass. Body mass was measured for each
individual just before each day of experiments using an Ohaus
Scout Pro balance accurate to 0.1 g. Body mass averaged

g for the S. woodi in this study. Muscle mass–specific3.4 � 0.1
power was calculated by dividing raw power by the muscle
mass of the hindlimb retractors and extensors (see Curtin et
al. 2005). We quantified the mass of the main femoral retractor
(mm. caudofemoralis) and knee and ankle extensors (mm. am-
biens and mm. gastrocnemius) via dissection of three preserved
S. woodi specimens. These dissections indicated that retractor
and extensor muscle mass constitutes an average of 4% of body
mass in S. woodi. To approximate individual muscle mass, we
multiplied individual body mass by this average muscle mass.
This method assumes that 4% is an accurate estimation of
muscle mass across all individuals in this study; future studies
should test the validity of this assumption.

Statistical Analysis

We used JMP7 (2007; SAS Institute, Cary, NC) for all statistical
analyses. We ensured that all variables were normally distributed
before analyses.

We used a single-factor ANOVA to test for differences in the

percentage of maximum racetrack speed achieved at 0.4 m
(response) between individuals that used different numbers of
steps (main effect) to accelerate over 0.4 m.

Separate multiple linear regressions were used to examine
the relative contribution of acceleration performance and
power in steps 1, 2, 3, 4, and 5. Acceleration performance on
step numbers (i.e., 1–5) was entered as predictors, and final
speed at 0.4 m was entered as the response.

The results of the above multiple regressions indicated that
acceleration performance during steps 1 and 2 were the only
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Table 1: Data for Sceloporus woodi

Steps
to
.4 m n

Speed
at .4 m
(m s�1)

Maximum
Racetrack
Speed
Reached
(%)

Step 1 Step 2 Step 3 Step 4 Step 5

Acceleration
Performance
(m s�1) CV

Acceleration
Performance
(m s�1) CV

Acceleration
Performance
(m s�1) CV

Acceleration
Performance
(m s�1) CV

Acceleration
Performance
(m s�1) CV

2 2 1.29 � .07 54 � 5 .98 � .10 15 .25 � .15 82
3 2 1.74 � .27 88 � 8 1.38 � .30 30 .20 � .02 11 .11 � .01 2
4 5 1.69 � .12 74 � 5 .65 � .14 47 .60 � .15 54 .11 � .03 56 .19 � .07 84
5 10 1.71 � .14 96 � 2 .59 � .13 70 .47 � .11 75 .31 � .07 76 .12 � .04 107 .14 � .03 66

Note. Data include sample size (n), mean speed at 0.4 m, maximum speed reached at 0.4 m (%), per step acceleration performance � SEM, and the coefficient

of variation (CV) for acceleration performance. Data are split according to the number of steps required to reach maximum velocity.

Table 2: Multiple regression models examining which
steps’ acceleration is the best predictor of speed at 0.4 m

Model and
Predictor Standard b r2 F df P

Five steps .94 12.12 5, 4 .016
Step 1* .87
Step 2* 1.22
Step 3 .29
Step 4 .11
Step 5 .20

All Individuals .69 9.85 3, 15 .001
Step 1* .82
Step 2*** 1.18
Step 3 .32

Note. Two separate analyses were run: (1) a model for individuals that

used five steps to achieve maximum speed and included the acceleration

performance from all five steps; and (2) a model with only steps 1, 2, and

3 as predictors but including all individuals, except those that took only

two steps. Parameter estimates were standardized (standard b) by dividing

the parameter by its standard error, which makes their values directly

comparable. Statistically significant parameters determined via F-tests.

* .P ! 0.05

*** .P ! 0.0001

significant predictors of speed. To further explore the inter-
relationship between steps 1 and 2, linear regression (ordinary
least squares) was used to test the relationship between step 1
versus step 2 acceleration performance. We also explored the
relative contribution of ground contact time and peak accel-
eration (predictors) to per step acceleration performance (re-
sponse) for steps 1 and 2. For all regression analyses, effect
tests (F-tests) were used to test for significant predictors.

Analysis of steps 1 and 2 acceleration performance showed
that S. woodi used three strategies to accelerate over the first
two steps (see “Results”). To test the validity of this tripartite
separation of the data, we used MANOVA with strategy as the
main effect and acceleration performance in steps 1 and 2 as
responses. Thus, we constructed planned linear contrasts
(Quinn and Keough 2002) within two separate ANOVAs. One
ANOVA compared the peak mechanical power on step 1 (re-
sponse) between individuals with large accelerations on step 1
versus individuals using the two other strategies. The second
ANOVA compared the peak mechanical power on step 2 (re-
sponse) between individuals with large acceleration on step 2
versus individuals using the two other strategies. Finally, to
explore the impact of mechanical power on speed and accel-
eration, we ran three separate multiple regressions. In all anal-
yses, raw peak external mechanical power on steps 1 and 2
were entered as the predictor variables with the following as
response variables (each a different analysis): (1) speed at 0.4
m, (2) step 1 acceleration performance, and (3) step 2 accel-
eration performance.

Finally, we calculated the coefficient of variation as a mea-
surement of the variation in acceleration performance per step.

Results

Sceloporus woodi averaged (SEM) m s�1 (range p1.73 � 0.09
1.11–2.57) at 0.4 m of the racetrack and m s�12.01 � 0.09
down the 3-m length of the racetrack. Over the first 0.4 m of
the racetrack, individuals accelerated to an average of 86% of
their overall maximum racetrack speed. However, individual
variation in acceleration strategy was considerable. Individuals
used from two to five steps to move across the first 0.4 m of
the racetrack (Fig. 1; Table 1). The number of steps had a
significant impact on the percent of maximum racetrack speed
achieved over the first 0.4 m; individuals taking more steps

achieved a higher percent of their maximum racetrack speeds
( , ; mean percent maximum: two steps pF p 19.15 P ! 0.0013, 15

54%, three steps p 88%, four steps p 74%, five steps p
96%). Individuals using only two, three, or four steps never
reached their overall maximum racetrack speed, whereas all of
the individuals using five steps always achieved 184% of their
maximum racetrack speed. Thus, S. woodi needs to take at least
five steps over the first approximately half meter to achieve
maximum running speed; fewer steps result in lower speeds
over the first 0.4 m.

Acceleration performance during steps 1 and 2 was clearly
the most important predictor of speed. For individuals using
five steps, a multiple regression model with acceleration per-
formance for steps 1, 2, 3, 4, and 5 as the predictor and speed
at 0.4 m as the response found that acceleration performance
in steps 1 and 2 was the only significant predictor of speed at
0.4 m (Table 2). To include all individuals, we also ran a mul-
tiple regression with acceleration performance in steps 1, 2, and
3 as the predictor and speed as the response. This model also
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Figure 2. Mean values of per step acceleration performance for indi-
viduals reaching maximum acceleration performance on step 1 (A)
and step 2 (B) and equal acceleration performance on steps 1 and 2
(C) in Sceloporus woodi. Only individuals that used five steps are shown;
n indicates sample sizes. Error bars show �1 SEM. Steps 1 and 2 are
significantly different in acceleration performance between the three
strategies. Steps 3, 4, and 5 do not differ (ANOVA, ).P 1 0.05

found that acceleration performance in steps 1 and 2 was the
only significant predictor of speed (Table 2). Thus, larger ac-
celerations in the first two steps are key to achieving faster
speeds over the first 0.4 m of burst locomotion.

Although five steps were needed to achieve maximum speed
within 0.4 m, the step in which an individual achieved peak

acceleration and the largest acceleration performance was var-
iable (Fig. 1). Three acceleration strategies are apparent: (1)
peak acceleration and acceleration performance on step 1, (2)
peak acceleration and acceleration performance on step 2, and
(3) equal peak acceleration and acceleration performance on
steps 1 and 2 (Fig. 2). This tripartite grouping of the data is
supported by the negative relationship between acceleration
performance for step 1 and acceleration performance for step
2 ( , ; , ), such that in-2b p �0.54 r p 0.51 F p 17.76 P ! .0011, 17

dividuals with a large acceleration performance in step 1 had
a smaller acceleration performance in step 2 (Table 3; Fig. 3).
In addition, a MANOVA with acceleration strategy as the main
effect and steps 1 and 2 acceleration performance as the re-
sponse variable shows that these groups are significantly dif-
ferent ( , , ). The top speedl p 0.128 F p 13.48 P ! .00014, 30

achieved by these strategies was statistically indistinguishable,
although there was a tendency for individuals peaking on step
1 to be slower than those peaking on step 2 or with equal steps
1 and 2 (Table 3).

Separate multiple regression models for steps 1 and 2 with
Tc and peak acceleration as predictors and acceleration per-
formance as the response were generated to examine how S.
woodi modulated these two variables to achieve maximum ac-
celeration performance. These models found that peak accel-
eration and Tc have different impacts on step 1 versus step 2
acceleration performance. For step 1, S. woodi increases both
Tc and peak acceleration in order to generate larger step 1
acceleration performance (overall model: ,2r p 0.71 F p3, 15

, ; effect tests: peak acceleration, ,12.11 P ! 0.001 F p 10.281, 15

; Tc, , ). For step 2, only in-P p 0.006 F p 25.57 P ! 0.0011, 15

creases in peak acceleration lead to an increase in step 2 ac-
celeration performance (overall model: ,2r p 0.75 F p3, 15

, ; effect tests: peak acceleration, ,15.07 P ! 0.001 F p 16.411, 15

; Tc, , ). Thus, S. woodi modu-P p 0.001 F p 0.28 P p 0.601, 15

lates both ground contact time and peak acceleration to achieve
larger acceleration performance and thus larger speeds.

The analysis of mechanical power indicated that individuals
with large step 1 acceleration have higher peak power on step
1 when compared with the other strategies ( ,F p 4.62 P p1, 18

; Table 4; Fig. 4). Likewise, individuals with the largest0.045
step 2 acceleration had higher peak power on step 2 (F p1, 18

, ; Table 4; Fig. 4). Finally, individuals with the5.31 P p 0.033
largest step 2 acceleration had higher peak power on step 2
than any other step by any other strategy ( ,F p 9.02 P p1, 18

; Table 4; Fig. 4). Mechanical power on steps 1 and 2 was0.005
predictive of both speed at 0.4 m and acceleration performance
during steps 1 and 2 (Table 5). Results were similar for absolute,
mass-specific, and muscle mass–specific mechanical power.

In general, variation in acceleration performance increased
with step number (Table 1). Steps 1 and 2 had the lowest
amount of variation, with increasing amounts of variation in
steps 3, 4, and 5. The steps that had the lowest amount of
variation (steps 1 and 2) were the best predictors of speed at
0.4 m, while those with the most variation (steps 3, 4, and 5)
were the poorest predictors of speed (Tables 1, 2).
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Table 3: Data for individuals that reached maximum acceleration performance on step 1 or step 2 or had
equal acceleration performance on the first two steps

Step of
Maximum
Acceleration n

Speed at
.4 m (m
s�1)

Step 1 Step 2

Acceleration
Performance
(m s�1)

Peak Acceleration
(m s�2)

Acceleration
Performance
(m s�1)

Peak Acceleration
(m s�2)

1 10 1.54 � .10 1.03 � .11B 37.5 � 3.87 .22 � .04F 16.9 � .99I

2 5 1.99 � .20 .24 � .06C 19.5 � 6.14 .90 � .10G 40.8 � 5.22I

1 and 2 equal 4 1.86 � .10 .59 � .06C 37.9 � 3.94 .49 � .06H 32.0 � 7.29J

ANOVA:
F 3.45 15.29 4.25 35.72 13.00
df 2, 16 2, 16 2, 16 2, 16 2, 16
P .0568 .0002* .0332 !.0001* .0004*

Note. Data include speed at 0.4 m, acceleration performance, and peak acceleration � SEM. The last three rows contain the results

from ANOVAs with step of maximum acceleration as the main effect. Letters connect statistically similar values via a post hoc Tukey HSD.

* Denotes P values that remain significant after sequential Bonferroni correction (Quinn and Keough 2002).

Figure 3. Linear regression showing inverse relationship between acceleration performance on step 1 versus acceleration performance on step
2 ( , ; , ).2b p �0.54 r p 0.51 F p 17.76 P ! 0.0011, 17

Discussion

How Do Animals Accelerate Rapidly to Fast Speeds?

Two components are necessary to achieve the highest sprinting
speeds within the first 0.4 m of locomotion: a high initial ac-
celerative burst and at least five steps of acceleration. The initial
burst from a standstill is critical; individuals with the greatest
acceleration performance on step 1 and step 2 achieved the
highest speeds by 0.4 m (Table 2). The acceleration performance
achieved during steps 1 and 2 allowed Sceloporus woodi to reach
∼70% of its maximum racetrack sprinting speed by the begin-
ning of step 3 (Fig. 2; Table 1). Thus, as in previous studies
(Huey and Hertz 1984; Irschick and Jayne 1998; Curtin et al.
2005; Vanhooydonck et al. 2006a, 2006b), we show that the

superior acceleration performance in the initial steps of burst
locomotion is key to obtaining high sprinting speeds that ap-
proach maximum speed over a very short distance (e.g., 0.4
m).

However, our analysis showed that more than just a good
initial burst is required to reach a high speed. Sceloporus woodi
must take at least five steps to reach near maximum sprinting
speed (Table 1). Several lines of evidence support this finding.
First, although steps 1 and 2 allow S. woodi to reach 70% of
its maximum speed, it must continue with smaller acceleration
on steps 3, 4, and 5 to reach maximum speed (Tables 1, 2; Fig.
2). Although maximum speed and acceleration performance
have moderate to strong partial correlations across all steps,
steps 3, 4, and 5 are not significant predictors of maximum
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Table 4: Data for burst locomotion in Sceloporus woodi

Acceleration
Strategy

Peak Mechanical
Power (W)

Body Mass–Specific
Peak Power (W kg�1)

Muscle Mass–Specific
Peak Power (W kg�1)

Step 1 Step 2 Step 1 Step 2 Step 1 Step 2

Step 1 .08 � .02 .07 � .01 23 � 4 18 � 2 576 � 92 440 � 43
Step 2 .02 � .01 .13 � .03 6 � 3 39 � 8 142 � 73 983 � 211
Equal .06 � .02 .07 � .02 20 � 7 27 � 9 491 � 179 676 � 235

Note. Values are means � SEM. Muscle mass–specific power was calculated assuming full activation of the hindlimb

retractors and extensors, which constitute ∼4% of body mass in S. woodi. Data are divided into the three strategies used

during the first two steps of burst locomotion (see “Results”).

Figure 4. Muscle mass– and body mass–specific external mechanical power for steps 1 and 2. The data are split into the three ways that
maximum acceleration was achieved (step 1, step 2, equal steps 1 and 2).

speed (Table 2), and this is likely due to the high variability of
acceleration in those steps (Table 1). Thus, lizards must simply
have some acceleration during steps 3, 4, and 5 to reach max-
imum locomotor speed over a distance of 0.4 m. This conclu-
sion is supported by our finding that individuals that used five
steps to reach maximum speed reached, on average, 96% of
their maximum racetrack speed, while individuals taking fewer
steps to reach maximum speed reached lower percentages
(54%–88%) of their maximum (Table 1). We note that indi-
viduals taking fewer than five steps over the first 0.4 m likely
need a greater distance than we filmed (10.4 m) to take ad-
ditional accelerative steps and achieve maximum running
speed. An experimental setup with multiple cameras or sensors
to measure instantaneous acceleration and speed over greater
distances would be useful for addressing this issue. We urge
future investigations of acceleration capacity to quantify ac-
celeration performance for all steps to maximum speed in order
to examine the generality of this finding.

In a running animal, acceleration performance (i.e., the ac-
celeration integral) can be increased in two ways: (1) the time
of ground contact (Tc) and/or (2) peak acceleration could be
increased. However, which of these strategies results in the high-

est acceleration performance and the largest speed over a short
distance? We show that both Tc and peak acceleration can be
adjusted during the first two steps of burst locomotion. On
step 1, increases in both Tc and peak acceleration result in
greater acceleration performance, whereas on step 2, increases
in only peak acceleration resulted in greater acceleration per-
formance. Coupled with our finding that step 2 acceleration
performance is the best predictor of maximum speed (Table
2), we conclude that increases in peak acceleration during step
2 will have the most profound impact on maximum running
speed in S. woodi. We note that this finding is different from
that of Irschick and Jayne (1998) and Vanhooydonck et al.
(2006a), suggesting that lizard species are variable in how they
accelerate and that different steps might be important in dif-
ferent species.

Interestingly, a trade-off exists between step 1 and step 2 in
acceleration (Table 3; Fig. 2). Individuals with good accelera-
tions on step 1 have poor acceleration on step 2 and vice versa.
This result suggests that individuals that have a poor start on
step 1 are able to quickly recover with a large acceleration
during step 2 and achieve the same speed in the same number
of steps. One explanation for this finding is that the initial limb
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Table 5: Multiple regression models examining which steps’ peak
external mechanical power output is the best predictor of speed at
0.4 m and acceleration performance

Model (Response) and
Predictor Standard b r2 F df P

Speed at .4 m .71 19.37 2, 16 .001
Peak power 1 .005
Peak power 2 .840***

Acceleration performance:
Step 1 .74 22.80 2, 16 .001

Peak power 1 .849***
Peak power 2 �.390*

Step 2 .86 48.11 2, 16 .001
Peak power 1 �.613***
Peak power 2 .828***

Note. Parameter estimates were standardized (standard b) by dividing the parameter

by its standard error. Statistically significant parameters were determined via F-tests.

* .P ! 0.05

*** .P ! 0.0001

configuration before step 1 may have been suboptimal for
achieving maximum muscle activation and acceleration force
in some individuals. Thus, these individuals may compensate
for this initially poor configuration by maximally activating the
musculature during step 2. Kinematic data are needed to test
this hypothesis. This variability in per step acceleration per-
formance must be accounted for in future efforts to understand
the evolution and functional morphology of acceleration via
adequate intraspecific sampling (Wainwright et al. 2008).

Does Mechanical Power Limit Accelerations and
Running Speed?

Previous studies have suggested that mechanical power does
not limit maximum locomotor speed during horizontal run-
ning in limbed animals (Farley 1997; Irschick et al. 2003). How-
ever, these studies also suggest that other aspects of perfor-
mance, such as acceleration or maneuvering, may be limited
by the mechanical power that the limb musculature can gen-
erate. One study supports this idea, showing that the first few
steps of acceleration result in whole-animal mechanical power
that approaches the limit of muscle power previously measured
for lizards (∼900 W kg�1 in Acanthodactylus boskianus; Curtin
et al. 2005: Fig. 1, right). Our data reveal a similar amount of
body mass–specific and muscle mass–specific mechanical
power during step 2 in S. woodi (Table 4; Fig. 4), suggesting
that available muscle power limits the mechanical power re-
quired to sustain large accelerations in S. woodi.

Could a power limitation on acceleration result in a power
limitation on maximum speed? Imagine two animals that both
accelerate from a standstill to the same maximum speed. An-
imal 1 initially uses high-power, large-acceleration steps and
then shifts to low-power, low-acceleration steps as it approaches
maximum speed. This situation is biologically realistic and has
been observed in a number of small animals (Huey and Hertz

1984; Irschick and Jayne 1998; Curtin et al. 2005; Vanhooy-
donck et al. 2006a), including S. woodi (Tables 1, 4). Animal
2 produces very low acceleration initially but still reaches the
same maximum speed. Animal 2 could reach the same maxi-
mum speed as animal 1 only by (1) taking more steps and
adding up very small accelerations to achieve maximum speed
or (2) using huge accelerations at higher speeds, because the
animal has already taken two to three low-acceleration steps.
Solution 1 is possible because muscles could continue to op-
erate at submaximal power (!∼1,000 W kg�1) for many steps;
however, it is unlikely in nature because most small animals
achieve maximum speed with just a few steps (Huey and Hertz
1984; Irschick and Jayne 1998; Curtin et al. 2005; Vanhooy-
donck et al. 2006a; this study), and when moving in the wild,
animals use an intermittent, burst locomotor strategy that pre-
cludes taking many low-power steps (Irschick 2000; McElroy
et al. 2007). Solution 2 is probably impossible because the
musculature cannot operate at the astronomically large power
(e.g., 2,500–3,000 W kg�1) needed to couple large peak accel-
erations (50–60 m s�2) and very fast speeds (2 m s�1). Thus,
it seems likely that muscle power constrains small animals to
using large accelerations within the first couple of steps of burst
locomotion (when speeds are slow), as has been observed in
many small animals (including in this study). Furthermore, if
large accelerations are constrained to the first couple of steps
(Table 1) because of a limit in muscle power (Table 4) and
those steps are predictive of maximum speed (Tables 2, 5), then
it is plausible that maximum speed could be limited by the
available power during the first couple of steps during burst
locomotion. This hypothesis could be tested via the use of
loading experiments (Irschick et al. 2003), which examine
power output, acceleration, and speed for each step involved
in burst locomotion from a standstill to maximum running
speed.

While the above argument applies to individuals reaching
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maximum acceleration performance and power on step 2, what
about individuals reaching maximum values on step 1 or having
equal steps 1 and 2? In these strategies, power output is con-
siderably less than the maximum power output the extensors
and retractors are capable of producing (Fig. 4; Table 4). Thus,
in individuals that reach maximum acceleration performance
and power on step 1 or having equal steps 1 and 2, muscle
power is operating at a suboptimal level. As mentioned above,
suboptimal acceleration and power could result from disad-
vantageous initial limb configurations or kinematics. Another
possibility as to why animals chose these strategies is that ex-
cessively large accelerations can cause the body to pitch upward
and the lizard to topple backward (Aerts et al. 2003). We did
not observe any subjects pitch upward at the start of a run,
yet this hypothesis seems particularly relevant to taxa that use
both quadrupedal and bipedal locomotion (see Aerts et al.
2003). Many lizard species (e.g., Acanthodactylus, Aspidoscelis:
E. J. McElroy, personal observation) run bipedally within the
first few steps and likely do so via large accelerations in steps
1 and 2. Other species run bipedally only after many steps or
meters (e.g., Callisaurus: Irschick and Jayne 1999; Crotaphytus:
E. J. McElroy, personal observation). These other species may
apply solution 1 from above; they sum several steps each with
smaller accelerations until they attain a high speed quadru-
pedally and then switch to bipedal locomotion (see also Cle-
mente et al. 2008). Thus, per step acceleration performance,
maximum acceleration, and power could be physiological fac-
tors that explain variation in gaits or locomotor modes that
animals use in nature. Although we lack the data to test these
hypotheses, the momentum-impulse approach could be applied
to such problems, given the appropriate field data on gait tran-
sitions and bipedality.

Acceleration is clearly important for animal fitness (Miles
2004), is correlated with other ecomorphological variables
(Vanhooydonck et al. 2006a, 2006b), and scales with body size
(Huey and Hertz 1984; Vanhooydonck et al. 2006b); however,
until now, a basic functional framework for studying acceler-
ation performance was lacking. We demonstrate the utility of
the momentum-impulse approach as a first step in identifying
the strategies that small animals use to achieve high accelera-
tions and maximal velocities in the first few steps of burst
locomotion. We see this approach as an advance over previous
studies because we show that Tc and peak acceleration account
for only ∼70%–75% of the variation in the change in speed
over steps 1 and 2 (see “Results”), which is captured by using
the momentum-impulse approach. Future studies could com-
bine this method with measurements of limb kinematics, me-
chanics, anatomy, and gait transitions to develop an integrative
functional framework for studying the biomechanics of accel-
eration capacity in terrestrial animals.
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